Department of Psychometrics and Statistics, University of Groningen.
Psychol Methods. 2021 Jun;26(3):357-373. doi: 10.1037/met0000348. Epub 2020 Aug 27.
A norm-referenced score expresses the position of an individual test taker in the reference population, thereby enabling a proper interpretation of the test score. Such normed scores are derived from test scores obtained from a sample of the reference population. Typically, multiple reference populations exist for a test, namely when the norm-referenced scores depend on individual characteristic(s), as age (and sex). To derive normed scores, regression-based norming has gained large popularity. The advantages of this method over traditional norming are its flexible nature, yielding potentially more realistic norms, and its efficiency, requiring potentially smaller sample sizes to achieve the same precision. In this tutorial, we introduce the reader to regression-based norming, using the generalized additive models for location, scale, and shape (GAMLSS). This approach has been useful in norm estimation of various psychological tests. We discuss the rationale of regression-based norming, theoretical properties of GAMLSS and their relationships to other regression-based norming models. Based on 6 steps, we describe how to: (a) design a normative study to gather proper normative sample data; (b) select a proper GAMLSS model for an empirical scale; (c) derive the desired normed scores for the scale from the fitted model, including those for a composite scale; and (d) visualize the results to achieve insight into the properties of the scale. Following these steps yields regression-based norms with GAMLSS for a psychological test, as we illustrate with normative data of the intelligence test IDS-2. The complete R code and data set is provided as online supplemental material. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
常模参照分数表示个体应试者在参照人群中的位置,从而能够对考试分数进行适当的解释。这种标准化分数是根据参照人群样本中的考试分数得出的。通常,一个测试会有多个参照人群,即当标准化分数取决于个体特征(如年龄和性别)时。为了得出标准化分数,基于回归的标准化已经得到了广泛的应用。与传统的标准化方法相比,这种方法的优点是其灵活性,可以产生更现实的常模,并且效率更高,需要更小的样本量就可以达到相同的精度。在本教程中,我们使用广义加性模型进行位置、比例和形状(GAMLSS)向读者介绍基于回归的标准化。这种方法在各种心理测试的常模估计中非常有用。我们讨论了基于回归的标准化的基本原理、GAMLSS 的理论性质及其与其他基于回归的标准化模型的关系。基于 6 个步骤,我们描述了如何:(a) 设计一个规范研究来收集适当的规范样本数据;(b) 为实证量表选择合适的 GAMLSS 模型;(c) 从拟合模型中为量表推导出所需的标准化分数,包括复合量表的分数;(d) 可视化结果,以深入了解量表的性质。按照这些步骤,可以使用 GAMLSS 为心理测试生成基于回归的常模,我们将用 IDS-2 智力测试的规范数据来说明这一点。完整的 R 代码和数据集作为在线补充材料提供。(PsycInfo 数据库记录(c)2021 APA,保留所有权利)。