Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
Mol Biol Evol. 2021 Jan 23;38(2):380-392. doi: 10.1093/molbev/msaa212.
Mutations in cis-regulatory elements play important roles for phenotypic changes during evolution. Eye degeneration in the blind mole rat (BMR; Nannospalax galili) and other subterranean mammals is significantly associated with widespread divergence of eye regulatory elements, but the effect of these regulatory mutations on eye development and function has not been explored. Here, we investigate the effect of mutations observed in the BMR sequence of a conserved noncoding element upstream of Tdrd7, a pleiotropic gene required for lens development and spermatogenesis. We first show that this conserved element is a transcriptional repressor in lens cells and that the BMR sequence partially lost repressor activity. Next, we recapitulated evolutionary changes in this element by precisely replacing the endogenous regulatory element in a mouse line by the orthologous BMR sequence with CRISPR-Cas9. Strikingly, this repressor replacement caused a more than 2-fold upregulation of Tdrd7 in the developing lens; however, increased mRNA level does not result in a corresponding increase in TDRD7 protein nor an obvious lens phenotype, possibly explained by buffering at the posttranscriptional level. Our results are consistent with eye degeneration in subterranean mammals having a polygenic basis where many small-effect mutations in different eye-regulatory elements collectively contribute to phenotypic differences.
顺式调控元件的突变在进化过程中的表型变化中起着重要作用。盲鼹鼠(BMR;Nannospalax galili)和其他地下哺乳动物的眼睛退化与眼睛调控元件的广泛分歧显著相关,但这些调控突变对眼睛发育和功能的影响尚未被探索。在这里,我们研究了在 Tdrd7 上游保守非编码元件的 BMR 序列中观察到的突变的影响,该基因是晶状体发育和精子发生所必需的多效基因。我们首先表明,这个保守元件在晶状体细胞中是一个转录抑制子,而 BMR 序列部分丧失了抑制子活性。接下来,我们通过使用 CRISPR-Cas9 将内源性调控元件精确替换为来自 BMR 的同源序列,在小鼠系中重现了这个元件的进化变化。引人注目的是,这种抑制子替换导致发育中的晶状体中 Tdrd7 的表达上调了两倍以上;然而,mRNA 水平的增加并没有导致 TDRD7 蛋白的相应增加,也没有明显的晶状体表型,这可能是由于在转录后水平上的缓冲作用。我们的结果与地下哺乳动物的眼睛退化具有多基因基础一致,其中不同眼睛调控元件中的许多小效应突变共同导致表型差异。