Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):23054-23065. doi: 10.1073/pnas.1919063117. Epub 2020 Aug 27.
The 100-y-old neuron doctrine from Ramón y Cajal states that neurons are individual cells, rejecting the process of cell-cell fusion in the normal development and function of the nervous system. However, fusogens-specialized molecules essential and sufficient for the fusion of cells-are expressed in the nervous system of different species under conditions of viral infection, stress, or disease. Despite these findings, whether the expression of fusogens in neurons leads to cell-cell fusion, and, if so, whether this affects neuronal fate, function, and animal behavior, has not been explored. Here, using chemosensory neurons as a model system, we provide proof-of-principle that aberrant expression of fusogens in neurons results in neuron-neuron fusion and behavioral impairments. We demonstrate that fusion between chemoattractive neurons does not affect the response to odorants, whereas fusion between chemoattractive and chemorepulsive neurons compromises chemosensation. Moreover, we provide evidence that fused neurons are viable and retain their original specific neuronal fate markers. Finally, analysis of calcium transients reveals that fused neurons become electrically coupled, thereby compromising neural circuit connectivity. Thus, we propose that aberrant expression of fusogens in the nervous system disrupts neuronal individuality, which, in turn, leads to a change in neural circuit connectivity and disruption of normal behavior. Our results expose a previously uncharacterized basis of circuit malfunction, and a possible underlying cause of neurological diseases.
雷蒙·卡哈尔 (Ramón y Cajal) 的百年神经元学说指出神经元是独立的细胞,拒绝细胞融合过程在神经系统的正常发育和功能中。然而,在病毒感染、应激或疾病等条件下,融合蛋白——细胞融合所必需且充分的特殊分子——在不同物种的神经系统中表达。尽管有这些发现,但神经元中融合蛋白的表达是否导致细胞-细胞融合,如果是,是否会影响神经元的命运、功能和动物行为,尚未得到探索。在这里,我们使用化学感觉神经元作为模型系统,提供了确凿的证据表明神经元中融合蛋白的异常表达导致神经元-神经元融合和行为障碍。我们证明,化学吸引神经元之间的融合不会影响对气味的反应,而化学吸引神经元和化学排斥神经元之间的融合会损害化学感觉。此外,我们提供的证据表明融合神经元是存活的,并保留其原始的特定神经元命运标记物。最后,钙瞬变分析表明融合神经元之间发生电耦联,从而破坏神经回路连接。因此,我们提出神经元中融合蛋白的异常表达破坏了神经元的个体性,进而导致神经回路连接的改变和正常行为的中断。我们的研究结果揭示了以前未被描述的电路功能障碍的基础,以及神经疾病的可能潜在原因。