Suppr超能文献

用于制造图案化微孔和高通量生产均匀细胞球体的三维打印印章

Three-Dimensional Printed Stamps for the Fabrication of Patterned Microwells and High-Throughput Production of Homogeneous Cell Spheroids.

作者信息

Gonzalez-Fernandez Tomas, Tenorio Alejandro J, Leach J Kent

机构信息

Department of Biomedical Engineering, University of California, Davis, Davis, California, USA.

Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, California, USA.

出版信息

3D Print Addit Manuf. 2020 Jun 1;7(3):139-147. doi: 10.1089/3dp.2019.0129. Epub 2020 Jun 5.

Abstract

Aggregation of cells into spheroids and organoids is a promising tool for regenerative medicine, cancer and cell biology, and drug discovery due to their recapitulation of the cell-cell and cell-matrix interactions found . Traditional approaches for the production of spheroids, such as the hanging drop method, are limited by the lack of reproducibility and the use of labor-intensive and time-consuming techniques. The need for high-throughput approaches allowing for the quick and reproducible formation of cell aggregates has driven the development of soft lithography techniques based on the patterning of microwells into nonadherent hydrogels. However, these methods are also limited by costly, labor-intensive, and multistep protocols that could impact the sterility of the process and efficiency of spheroid formation. In this study, we describe a one-step method for the fabrication of patterned nonadherent microwells into tissue culture plates using three-dimensional (3D) printed stamps and evaluate the production of cell spheroids of different sizes and cell sources. The generation of bone marrow-derived mesenchymal stromal cell and endothelial cell spheroids by the use of 3D printed stamps was superior in comparison with a widely used multistep mold technique, yielding spheroids of larger sizes and higher DNA content. The 3D stamps produced spheroids of more consistent diameter and DNA content when compared with other commercially available methods. These 3D printed stamps offer a tunable, simple, fast, and cost-effective approach for the production of reproducible spheroids and organoids for a wide range of applications.

摘要

细胞聚集成球体和类器官是再生医学、癌症和细胞生物学以及药物发现领域一种很有前景的工具,因为它们能够重现细胞间和细胞与基质间的相互作用。传统的球体生产方法,如悬滴法,受到缺乏可重复性以及使用劳动强度大且耗时的技术的限制。对高通量方法的需求,即允许快速且可重复地形成细胞聚集体,推动了基于在非粘附水凝胶中对微孔进行图案化的软光刻技术的发展。然而,这些方法也受到成本高、劳动强度大以及多步骤方案的限制,这些可能会影响过程的无菌性和球体形成的效率。在本研究中,我们描述了一种使用三维(3D)打印印章在组织培养板中制造图案化非粘附微孔的一步法,并评估了不同大小和细胞来源的细胞球体的生产情况。与广泛使用的多步骤模具技术相比,使用3D打印印章生成骨髓来源的间充质基质细胞和内皮细胞球体的效果更好,产生的球体更大且DNA含量更高。与其他市售方法相比,3D印章产生的球体直径和DNA含量更一致。这些3D打印印章为生产适用于广泛应用的可重复球体和类器官提供了一种可调节、简单、快速且经济高效的方法。

相似文献

1
2
Monte Carlo simulation-guided design for size-tuned tumor spheroid formation in 3D printed microwells.
Biotechnol Prog. 2024 Sep-Oct;40(5):e3470. doi: 10.1002/btpr.3470. Epub 2024 Apr 13.
4
Self-filling microwell arrays (SFMAs) for tumor spheroid formation.
Lab Chip. 2018 Nov 6;18(22):3516-3528. doi: 10.1039/c8lc00708j.
5
SpheroidChip: Patterned Agarose Microwell Compartments Harboring HepG2 Spheroids are Compatible with Genotoxicity Testing.
ACS Biomater Sci Eng. 2020 Apr 13;6(4):2427-2439. doi: 10.1021/acsbiomaterials.9b01951. Epub 2020 Mar 2.
7
Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells.
Acta Biomater. 2016 Nov;45:121-132. doi: 10.1016/j.actbio.2016.08.058. Epub 2016 Sep 1.
8
Fabrication of core-shell spheroids as building blocks for engineering 3D complex vascularized tissue.
Acta Biomater. 2019 Dec;100:158-172. doi: 10.1016/j.actbio.2019.09.028. Epub 2019 Sep 19.

引用本文的文献

2
Spheroids and organoids: Their implications for oral and craniofacial tissue/organ regeneration.
J Oral Biol Craniofac Res. 2024 Sep-Oct;14(5):540-546. doi: 10.1016/j.jobcr.2024.07.002. Epub 2024 Jul 9.
3
Skeletal Muscle Spheroids as Building Blocks for Engineered Muscle Tissue.
ACS Biomater Sci Eng. 2024 Jan 8;10(1):497-506. doi: 10.1021/acsbiomaterials.3c01078. Epub 2023 Dec 19.
5
Multisized Photoannealable Microgels Regulate Cell Spreading, Aggregation, and Macrophage Phenotype through Microporous Void Space.
Adv Healthc Mater. 2023 May;12(13):e2202239. doi: 10.1002/adhm.202202239. Epub 2023 Feb 8.
6
Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs.
Acta Biomater. 2023 Jul 15;165:4-18. doi: 10.1016/j.actbio.2022.09.052. Epub 2022 Sep 24.
7
Adipogenesis or osteogenesis: destiny decision made by mechanical properties of biomaterials.
RSC Adv. 2022 Aug 30;12(38):24501-24510. doi: 10.1039/d2ra02841g.
8
Scalable fabrication, compartmentalization and applications of living microtissues.
Bioact Mater. 2022 Apr 27;19:392-405. doi: 10.1016/j.bioactmat.2022.04.005. eCollection 2023 Jan.

本文引用的文献

1
Morphogen Delivery by Osteoconductive Nanoparticles Instructs Stromal Cell Spheroid Phenotype.
Adv Biosyst. 2019 Dec;3(12). doi: 10.1002/adbi.201900141. Epub 2019 Oct 1.
2
Tunneling nanotubes mediate the expression of senescence markers in mesenchymal stem/stromal cell spheroids.
Stem Cells. 2020 Jan;38(1):80-89. doi: 10.1002/stem.3056. Epub 2019 Aug 1.
3
Cancer modeling meets human organoid technology.
Science. 2019 Jun 7;364(6444):952-955. doi: 10.1126/science.aaw6985.
4
Restoring vasculogenic potential of endothelial cells from diabetic patients through spheroid formation.
Cell Mol Bioeng. 2018 Aug;11(4):267-278. doi: 10.1007/s12195-018-0531-1. Epub 2018 May 23.
5
Defining hydrogel properties to instruct lineage- and cell-specific mesenchymal differentiation.
Biomaterials. 2019 Jan;189:1-10. doi: 10.1016/j.biomaterials.2018.10.024. Epub 2018 Oct 22.
6
Studying cellular heterogeneity and drug sensitivity in colorectal cancer using organoid technology.
Curr Opin Genet Dev. 2018 Oct;52:117-122. doi: 10.1016/j.gde.2018.09.001. Epub 2018 Sep 24.
8
High-Throughput Formation of Mesenchymal Stem Cell Spheroids and Entrapment in Alginate Hydrogels.
Methods Mol Biol. 2018;1758:139-149. doi: 10.1007/978-1-4939-7741-3_11.
9
Engineering principles for guiding spheroid function in the regeneration of bone, cartilage, and skin.
Biomed Mater. 2018 Mar 21;13(3):034109. doi: 10.1088/1748-605X/aab0b3.
10
Spheroids Formation on Non-Adhesive Surfaces by Liquid Overlay Technique: Considerations and Practical Approaches.
Biotechnol J. 2018 Jan;13(1). doi: 10.1002/biot.201700417. Epub 2017 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验