Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina.
Beckman Research Institute, City of Hope, Duarte, California.
Cancer Epidemiol Biomarkers Prev. 2020 Oct;29(10):1940-1948. doi: 10.1158/1055-9965.EPI-19-1365. Epub 2020 Aug 20.
Work is needed to better understand how joint exposure to environmental and economic factors influence cancer. We hypothesize that environmental exposures vary with socioeconomic status (SES) and urban/rural locations, and areas with minority populations coincide with high economic disadvantage and pollution.
To model joint exposure to pollution and SES, we develop a latent class mixture model (LCMM) with three latent variables (SES Advantage, SES Disadvantage, and Air Pollution) and compare the LCMM fit with K-means clustering. We ran an ANOVA to test for high exposure levels in non-Hispanic black populations. The analysis is at the census tract level for the state of North Carolina.
The LCMM was a better and more nuanced fit to the data than K-means clustering. Our LCMM had two sublevels (low, high) within each latent class. The worst levels of exposure (high SES disadvantage, low SES advantage, high pollution) are found in 22% of census tracts, while the best levels (low SES disadvantage, high SES advantage, low pollution) are found in 5.7%. Overall, 34.1% of the census tracts exhibit high disadvantage, 66.3% have low advantage, and 59.2% have high mixtures of toxic pollutants. Areas with higher SES disadvantage had significantly higher non-Hispanic black population density (NHBPD; < 0.001), and NHBPD was higher in areas with higher pollution ( < 0.001).
Joint exposure to air toxins and SES varies with rural/urban location and coincides with minority populations.
Our model can be extended to provide a holistic modeling framework for estimating disparities in cancer survival.
需要进一步研究环境和经济因素共同作用对癌症的影响。我们假设环境暴露与社会经济地位(SES)和城乡位置有关,少数族裔聚居地区往往经济条件较差,污染也更严重。
为了对污染和 SES 的共同暴露进行建模,我们开发了一个具有三个潜在变量(SES 优势、SES 劣势和空气污染)的潜在类别混合模型(LCMM),并将 LCMM 拟合与 K-均值聚类进行比较。我们进行了方差分析,以检验非西班牙裔黑人人群中的高暴露水平。该分析以北卡罗来纳州的普查区为单位。
LCMM 比 K-均值聚类更适合数据,也更细致。我们的 LCMM 在每个潜在类别中都有两个亚类(低、高)。暴露程度最差(SES 劣势高、SES 优势低、污染高)的普查区占 22%,而暴露程度最好(SES 劣势低、SES 优势高、污染低)的普查区占 5.7%。总的来说,34.1%的普查区表现出 SES 劣势高,66.3%的普查区 SES 优势低,59.2%的普查区存在多种有毒污染物的混合。SES 劣势较高的地区,非西班牙裔黑人人口密度显著更高(<0.001),而污染较高的地区,非西班牙裔黑人人口密度也更高(<0.001)。
空气毒素与 SES 的共同暴露因城乡位置而异,且与少数族裔聚居区有关。
我们的模型可以扩展,为估计癌症生存差异提供一个整体建模框架。