Molitor John, Coker Eric, Jerrett Michael, Ritz Beate, Li Arthur
Res Rep Health Eff Inst. 2016 Apr(183 Pt 3):3-47.
The highly intercorrelated nature of air pollutants makes it difficult to examine their combined effects on health. As such, epidemiological studies have traditionally focused on single-pollutant models that use regression-based techniques to examine the marginal association between a pollutant and a health outcome. These relatively simple, additive models are useful for discerning the effect of a single pollutant on a health outcome with all other pollutants held to fixed values. However, pollutants occur in complex mixtures consisting of highly correlated combinations of individual exposures. For example, evidence for synergy among pollutants in causing health effects has been recently reviewed by Mauderly and Samet (2009). Also, studies cited in the Ozone Criteria Document (U.S. Environmental Protection Agency [U.S. EPA*] 2006) confirmed that synergisms between ozone and other pollutants have been demonstrated in laboratory studies involving humans and animals. Thus, the highly correlated nature of air pollution exposures makes marginal, single-pollutant models inadequate. This issue was raised in a report by the National Research Council (NRC 2004), which called for a multipollutant approach to air quality management. Here we present and apply a series of statistical approaches that treat patterns of covariates as a whole unit, stochastically grouping pollutant patterns into clusters and then using these cluster assignments as random effects in a regression model. Using this approach, the effect of a multipollutant pattern, or profile, is determined in a manner that takes into account the uncertainty in the clustering process. The models are set in a Bayesian framework, and in general, Markov chain Monte Carlo (MCMC) techniques (Gilks et al. 1998). For interpretation purposes, a best clustering is derived, and the uncertainty related to this best clustering is determined by utilizing model averaging techniques, in a manner such that consistent clustering obtained by the estimation process generally yields smaller standard errors while inconsistent clustering is generally associated with larger errors. These multivariate methods are applied to a range of different problems related to air pollution exposures, namely an association of multipollutant profiles with indicators of poverty and to an assessment of the association between measures of various air pollutants, patterns of socioeconomic status (SES), and birth outcomes. All of these studies involve an examination of regional-level exposures, at the census tract (CT) and census block group (CBG) levels, and individual-level outcomes throughout Los Angeles (LA) County. Results indicate that effects of pollutants vary spatially and vary in a complex interconnected manner that cannot be discerned using standard additive line ar models. Results obtaine d from these studies can be used to efficiently use limited resources to inform policies in targeting are as where air pollution reductions result in maximum health benefits.
空气污染物之间高度相互关联的特性使得难以研究它们对健康的综合影响。因此,流行病学研究传统上侧重于单污染物模型,这些模型使用基于回归的技术来检验污染物与健康结果之间的边际关联。这些相对简单的加法模型有助于在所有其他污染物保持固定值的情况下,识别单一污染物对健康结果的影响。然而,污染物以复杂混合物的形式存在,其中包含个体暴露的高度相关组合。例如,Mauderly和Samet(2009年)最近回顾了污染物之间协同作用导致健康影响的证据。此外,《臭氧标准文件》(美国环境保护局[U.S. EPA*],2006年)中引用的研究证实,在涉及人类和动物的实验室研究中已证明臭氧与其他污染物之间存在协同作用。因此,空气污染暴露的高度相关性使得边际单污染物模型并不适用。美国国家研究委员会(NRC,2004年)的一份报告中提出了这个问题,该报告呼吁采用多污染物方法进行空气质量管理。在此,我们提出并应用一系列统计方法,将协变量模式作为一个整体单元来处理,将污染物模式随机分组为聚类,然后在回归模型中使用这些聚类分配作为随机效应。使用这种方法,多污染物模式或特征的影响是以考虑聚类过程中不确定性的方式确定的。这些模型建立在贝叶斯框架内,一般采用马尔可夫链蒙特卡罗(MCMC)技术(Gilks等人,1998年)。为了便于解释,得出最佳聚类,并通过利用模型平均技术确定与该最佳聚类相关的不确定性,其方式使得估计过程获得的一致聚类通常产生较小的标准误差,而不一致的聚类通常与较大的误差相关。这些多变量方法应用于一系列与空气污染暴露相关的不同问题,即多污染物特征与贫困指标之间的关联,以及各种空气污染物测量值、社会经济地位(SES)模式与出生结果之间关联的评估。所有这些研究都涉及在普查区(CT)和普查街区组(CBG)层面的区域水平暴露以及整个洛杉矶县的个体水平结果的检查。结果表明,污染物的影响在空间上各不相同,并且以一种复杂的相互关联方式变化,而使用标准加法线性模型无法识别这种方式。从这些研究中获得的结果可用于有效利用有限资源,为在空气污染减少能带来最大健康益处的目标区域制定政策提供信息。