Suppr超能文献

黏合模块是细胞外酶机械稳定性的主要决定因素。

The cohesin module is a major determinant of cellulosome mechanical stability.

机构信息

Instituto Cajal, IC-CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencia, Cantoblanco, 28049 Madrid, Spain.

Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

J Biol Chem. 2018 May 11;293(19):7139-7147. doi: 10.1074/jbc.RA117.000644. Epub 2018 Mar 22.

Abstract

Cellulosomes are bacterial protein complexes that bind and efficiently degrade lignocellulosic substrates. These are formed by multimodular scaffolding proteins known as scaffoldins, which comprise cohesin modules capable of binding dockerin-bearing enzymes and usually a carbohydrate-binding module that anchors the system to a substrate. It has been suggested that cellulosomes bound to the bacterial cell surface might be exposed to significant mechanical forces. Accordingly, the mechanical properties of these anchored cellulosomes may be important to understand and improve cellulosome function. Here we used single-molecule force spectroscopy to study the mechanical properties of selected cohesin modules from scaffoldins of different cellulosomes. We found that cohesins located in the region connecting the cell and the substrate are more robust than those located outside these two anchoring points. This observation applies to cohesins from primary scaffoldins ( those that directly bind dockerin-bearing enzymes) from different cellulosomes despite their sequence differences. Furthermore, we also found that cohesin nanomechanics (specifically, mechanostability and the position of the mechanical clamp of cohesin) are not significantly affected by other cellulosomal components, including linkers between cohesins, multiple cohesin repeats, and dockerin binding. Finally, we also found that cohesins (from both the connecting and external regions) have poor refolding efficiency but similar refolding rates, suggesting that the high mechanostability of connecting cohesins may be an evolutionarily conserved trait selected to minimize the occurrence of cohesin unfolding, which could irreversibly damage the cellulosome. We conclude that cohesin mechanostability is a major determinant of the overall mechanical stability of the cellulosome.

摘要

纤维小体是一种能够结合并有效降解木质纤维素底物的细菌蛋白复合物。这些复合物由多模块支架蛋白(称为支架蛋白)组成,其中包含能够结合含有 dockerin 的酶的黏合模块,通常还有一个碳水化合物结合模块,该模块将系统锚定到底物上。有人认为,结合在细菌细胞表面的纤维小体可能会受到很大的机械力。因此,这些固定纤维小体的机械性能对于理解和改善纤维小体功能可能很重要。在这里,我们使用单分子力谱法研究了来自不同纤维小体支架蛋白的选定黏合模块的机械性能。我们发现,位于细胞和底物之间连接区域的黏合模块比位于这两个锚固点之外的黏合模块更坚固。这一观察结果适用于来自不同纤维小体的主要支架蛋白(直接结合含有 dockerin 的酶的那些)中的黏合模块,尽管它们的序列存在差异。此外,我们还发现,黏合模块的纳米力学(特别是黏合模块的机械稳定性和机械夹具的位置)不受其他纤维小体成分的显著影响,包括黏合模块之间的接头、多个黏合模块重复序列和 dockerin 结合。最后,我们还发现,黏合模块(来自连接区域和外部区域)的重折叠效率都很差,但重折叠速率相似,这表明连接黏合模块的高机械稳定性可能是一种保守的进化特征,旨在最大限度地减少黏合模块展开的发生,因为这可能会不可逆地损坏纤维小体。我们的结论是,黏合模块的机械稳定性是纤维小体整体机械稳定性的主要决定因素。

相似文献

1
The cohesin module is a major determinant of cellulosome mechanical stability.
J Biol Chem. 2018 May 11;293(19):7139-7147. doi: 10.1074/jbc.RA117.000644. Epub 2018 Mar 22.
2
Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of .
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11274-E11283. doi: 10.1073/pnas.1809283115. Epub 2018 Nov 14.
3
Structure-function analyses generate novel specificities to assemble the components of multienzyme bacterial cellulosome complexes.
J Biol Chem. 2018 Mar 16;293(11):4201-4212. doi: 10.1074/jbc.RA117.001241. Epub 2018 Jan 24.
4
Impact of scaffoldin mechanostability on cellulosomal activity.
Biomater Sci. 2020 Jul 7;8(13):3601-3610. doi: 10.1039/c9bm02052g. Epub 2020 Mar 31.
5
Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity.
FEBS J. 2013 Nov;280(22):5764-79. doi: 10.1111/febs.12497. Epub 2013 Sep 10.
8
Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors.
J Biol Chem. 2015 May 22;290(21):13578-90. doi: 10.1074/jbc.M114.633339. Epub 2015 Apr 8.

引用本文的文献

1
Current challenges in designer cellulosome engineering.
Appl Microbiol Biotechnol. 2023 May;107(9):2755-2770. doi: 10.1007/s00253-023-12474-8. Epub 2023 Mar 21.
2
Acoustic force spectroscopy reveals subtle differences in cellulose unbinding behavior of carbohydrate-binding modules.
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2117467119. doi: 10.1073/pnas.2117467119. Epub 2022 Oct 10.
5
Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of .
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11274-E11283. doi: 10.1073/pnas.1809283115. Epub 2018 Nov 14.

本文引用的文献

1
Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides.
Nat Rev Microbiol. 2017 Feb;15(2):83-95. doi: 10.1038/nrmicro.2016.164. Epub 2016 Dec 12.
2
Direct Identification of Protein-Protein Interactions by Single-Molecule Force Spectroscopy.
Angew Chem Int Ed Engl. 2016 Nov 2;55(45):13970-13973. doi: 10.1002/anie.201605284. Epub 2016 Oct 13.
3
Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities.
Sci Adv. 2016 Feb 5;2(2):e1501254. doi: 10.1126/sciadv.1501254. eCollection 2016 Feb.
4
Cellulosomics of the cellulolytic thermophile Clostridium clariflavum.
Biotechnol Biofuels. 2014 Jul 1;7:100. doi: 10.1186/1754-6834-7-100. eCollection 2014.
6
Clustal omega.
Curr Protoc Bioinformatics. 2014 Dec 12;48:3.13.1-3.13.16. doi: 10.1002/0471250953.bi0313s48.
7
Ultrastable cellulosome-adhesion complex tightens under load.
Nat Commun. 2014 Dec 8;5:5635. doi: 10.1038/ncomms6635.
9
Biomass utilization by gut microbiomes.
Annu Rev Microbiol. 2014;68:279-96. doi: 10.1146/annurev-micro-092412-155618. Epub 2014 Jun 16.
10
Theoretical tests of the mechanical protection strategy in protein nanomechanics.
Proteins. 2014 May;82(5):717-26. doi: 10.1002/prot.24436. Epub 2014 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验