文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应用基于新型超声内镜卷积神经网络模型的人工智能技术来识别和区分肝良恶性肿块。

Application of artificial intelligence using a novel EUS-based convolutional neural network model to identify and distinguish benign and malignant hepatic masses.

机构信息

Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.

Independent Researcher, Chelsea, Massachusetts.

出版信息

Gastrointest Endosc. 2021 May;93(5):1121-1130.e1. doi: 10.1016/j.gie.2020.08.024. Epub 2020 Aug 28.


DOI:10.1016/j.gie.2020.08.024
PMID:32861752
Abstract

BACKGROUND AND AIMS: Detection and characterization of focal liver lesions (FLLs) is key for optimizing treatment for patients who may have a primary hepatic cancer or metastatic disease to the liver. This is the first study to develop an EUS-based convolutional neural network (CNN) model for the purpose of identifying and classifying FLLs. METHODS: A prospective EUS database comprising cases of FLLs visualized and sampled via EUS was reviewed. Relevant still images and videos of liver parenchyma and FLLs were extracted. Patient data were then randomly distributed for the purpose of CNN model training and testing. Once a final model was created, occlusion heatmap analysis was performed to assess the ability of the EUS-CNN model to autonomously identify FLLs. The performance of the EUS-CNN for differentiating benign and malignant FLLs was also analyzed. RESULTS: A total of 210,685 unique EUS images from 256 patients were used to train, validate, and test the CNN model. Occlusion heatmap analyses demonstrated that the EUS-CNN model was successful in autonomously locating FLLs in 92.0% of EUS video assets. When evaluating any random still image extracted from videos or physician-captured images, the CNN model was 90% sensitive and 71% specific (area under the receiver operating characteristic [AUROC], 0.861) for classifying malignant FLLs. When evaluating full-length video assets, the EUS-CNN model was 100% sensitive and 80% specific (AUROC, 0.904) for classifying malignant FLLs. CONCLUSIONS: This study demonstrated the capability of an EUS-CNN model to autonomously identify FLLs and to accurately classify them as either malignant or benign lesions.

摘要

背景与目的:检测和描述局灶性肝脏病变(FLL)对于优化原发性肝癌或肝脏转移患者的治疗至关重要。这是第一项旨在开发基于超声内镜(EUS)的卷积神经网络(CNN)模型以识别和分类 FLL 的研究。

方法:回顾性分析了一个包含通过 EUS 可视化和采样的 FLL 病例的前瞻性 EUS 数据库。提取了肝实质和 FLL 的相关静态图像和视频。然后,将患者数据随机分配用于 CNN 模型的训练和测试。一旦创建了最终模型,就进行遮挡热图分析,以评估 EUS-CNN 模型自主识别 FLL 的能力。还分析了 EUS-CNN 区分良性和恶性 FLL 的性能。

结果:共使用 256 名患者的 210685 张独特的 EUS 图像来训练、验证和测试 CNN 模型。遮挡热图分析表明,EUS-CNN 模型成功地在 92.0%的 EUS 视频资产中自主定位 FLL。在评估从视频或医师捕获的图像中提取的任何随机静态图像时,CNN 模型对恶性 FLL 的分类具有 90%的敏感性和 71%的特异性(接受者操作特征曲线下面积 [AUROC],0.861)。在评估全长视频资产时,EUS-CNN 模型对恶性 FLL 的分类具有 100%的敏感性和 80%的特异性(AUROC,0.904)。

结论:这项研究证明了 EUS-CNN 模型自主识别 FLL 并准确将其分类为恶性或良性病变的能力。

相似文献

[1]
Application of artificial intelligence using a novel EUS-based convolutional neural network model to identify and distinguish benign and malignant hepatic masses.

Gastrointest Endosc. 2021-5

[2]
Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images.

PLoS One. 2021

[3]
Multiphase convolutional dense network for the classification of focal liver lesions on dynamic contrast-enhanced computed tomography.

World J Gastroenterol. 2020-7-7

[4]
Utilisation of artificial intelligence for the development of an EUS-convolutional neural network model trained to enhance the diagnosis of autoimmune pancreatitis.

Gut. 2021-7

[5]
Applicability of multidimensional convolutional neural networks on automated detection of diverse focal liver lesions in multiphase CT images.

Med Phys. 2023-5

[6]
Convolutional neural network-based object detection model to identify gastrointestinal stromal tumors in endoscopic ultrasound images.

J Gastroenterol Hepatol. 2021-12

[7]
Differentiation of benign and malignant focal liver lesions: value of virtual touch tissue quantification of acoustic radiation force impulse elastography.

Med Oncol. 2015-3

[8]
Artificial intelligence-based diagnosis of standard endoscopic ultrasonography scanning sites in the biliopancreatic system: a multicenter retrospective study.

Int J Surg. 2024-3-1

[9]
Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study.

EBioMedicine. 2020-6

[10]
Artificial intelligence assists identifying malignant versus benign liver lesions using contrast-enhanced ultrasound.

J Gastroenterol Hepatol. 2021-10

引用本文的文献

[1]
Artificial intelligence-based ultrasound imaging technologies for hepatic diseases.

ILIVER. 2022-11-16

[2]
Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging.

Tomography. 2024-11-18

[3]
Radiomics-based automated machine learning for differentiating focal liver lesions on unenhanced computed tomography.

Abdom Radiol (NY). 2025-5

[4]
Artificial intelligence techniques in liver cancer.

Front Oncol. 2024-9-3

[5]
The application of artificial intelligence in EUS.

Endosc Ultrasound. 2024

[6]
Wavelet radiomics features from multiphase CT images for screening hepatocellular carcinoma: analysis and comparison.

Sci Rep. 2023-11-10

[7]
A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound.

J Clin Med. 2023-5-30

[8]
Improving artificial intelligence pipeline for liver malignancy diagnosis using ultrasound images and video frames.

Brief Bioinform. 2023-1-19

[9]
Endo-hepatology: The changing paradigm of endoscopic ultrasound in cirrhosis.

Clin Liver Dis (Hoboken). 2022-12-12

[10]
The Role of Endoscopic Ultrasound in Hepatology.

Gut Liver. 2023-3-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索