School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20200223. doi: 10.1098/rsta.2020.0223. Epub 2020 Aug 31.
Process-based, mechanistic investigations of organic matter transformation and diagenesis directly beneath the sediment-water interface (SWI) in Arctic continental shelves are vital as these regions are at greatest risk of future change. This is in part due to disruptions in benthic-pelagic coupling associated with ocean current change and sea ice retreat. Here, we focus on a high-resolution, multi-disciplinary set of measurements that illustrate how microbial processes involved in the degradation of organic matter are directly coupled with inorganic and organic geochemical sediment properties (measured and modelled) as well as the extent/depth of bioturbation. We find direct links between aerobic processes, reactive organic carbon and highest abundances of bacteria and archaea in the uppermost layer (0-4.5 cm depth) followed by dominance of microbes involved in nitrate/nitrite and iron/manganese reduction across the oxic-anoxic redox boundary (approx. 4.5-10.5 cm depth). Sulfate reducers dominate in the deeper (approx. 10.5-33 cm) anoxic sediments which is consistent with the modelled reactive transport framework. Importantly, organic matter reactivity as tracked by organic geochemical parameters (-alkanes, -alkanoic acids, -alkanols and sterols) changes most dramatically at and directly below the SWI together with sedimentology and biological activity but remained relatively unchanged across deeper changes in sedimentology. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
在北极大陆架的沉积物-水界面(SWI)以下,对有机质转化和成岩作用进行基于过程的、机械论的研究至关重要,因为这些区域未来变化的风险最大。这在一定程度上是由于海流变化和海冰消退导致底栖-浮游耦合中断。在这里,我们重点关注一组高分辨率、多学科的测量结果,这些结果说明了与有机质降解有关的微生物过程如何与无机和有机地球化学沉积物特性(实测和模拟)以及生物扰动的程度/深度直接相关。我们发现有氧过程、反应性有机碳以及细菌和古菌最高丰度之间存在直接联系,这些细菌和古菌存在于最上层(0-4.5 cm 深度),随后是参与硝酸盐/亚硝酸盐和铁/锰还原的微生物占主导地位,这些微生物存在于氧化-缺氧氧化还原边界(约 4.5-10.5 cm 深度)。硫酸盐还原菌在更深的(约 10.5-33 cm)缺氧沉积物中占主导地位,这与反应性迁移模型框架一致。重要的是,有机地球化学参数(-烷烃、-烷酸、-烷醇和甾醇)所追踪的有机质反应性在 SWI 及其直接下方变化最大,与沉积学和生物活性直接相关,但在更深的沉积学变化中相对不变。本文是“变化的北极海洋:对生物群落、生物地球化学过程和生态系统功能的影响”主题问题的一部分。