Suppr超能文献

巴伦支海沉积物剖面中有机质的转化:地球化学和微生物学过程的偶联。

Transformation of organic matter in a Barents Sea sediment profile: coupled geochemical and microbiological processes.

机构信息

School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20200223. doi: 10.1098/rsta.2020.0223. Epub 2020 Aug 31.

Abstract

Process-based, mechanistic investigations of organic matter transformation and diagenesis directly beneath the sediment-water interface (SWI) in Arctic continental shelves are vital as these regions are at greatest risk of future change. This is in part due to disruptions in benthic-pelagic coupling associated with ocean current change and sea ice retreat. Here, we focus on a high-resolution, multi-disciplinary set of measurements that illustrate how microbial processes involved in the degradation of organic matter are directly coupled with inorganic and organic geochemical sediment properties (measured and modelled) as well as the extent/depth of bioturbation. We find direct links between aerobic processes, reactive organic carbon and highest abundances of bacteria and archaea in the uppermost layer (0-4.5 cm depth) followed by dominance of microbes involved in nitrate/nitrite and iron/manganese reduction across the oxic-anoxic redox boundary (approx. 4.5-10.5 cm depth). Sulfate reducers dominate in the deeper (approx. 10.5-33 cm) anoxic sediments which is consistent with the modelled reactive transport framework. Importantly, organic matter reactivity as tracked by organic geochemical parameters (-alkanes, -alkanoic acids, -alkanols and sterols) changes most dramatically at and directly below the SWI together with sedimentology and biological activity but remained relatively unchanged across deeper changes in sedimentology. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.

摘要

在北极大陆架的沉积物-水界面(SWI)以下,对有机质转化和成岩作用进行基于过程的、机械论的研究至关重要,因为这些区域未来变化的风险最大。这在一定程度上是由于海流变化和海冰消退导致底栖-浮游耦合中断。在这里,我们重点关注一组高分辨率、多学科的测量结果,这些结果说明了与有机质降解有关的微生物过程如何与无机和有机地球化学沉积物特性(实测和模拟)以及生物扰动的程度/深度直接相关。我们发现有氧过程、反应性有机碳以及细菌和古菌最高丰度之间存在直接联系,这些细菌和古菌存在于最上层(0-4.5 cm 深度),随后是参与硝酸盐/亚硝酸盐和铁/锰还原的微生物占主导地位,这些微生物存在于氧化-缺氧氧化还原边界(约 4.5-10.5 cm 深度)。硫酸盐还原菌在更深的(约 10.5-33 cm)缺氧沉积物中占主导地位,这与反应性迁移模型框架一致。重要的是,有机地球化学参数(-烷烃、-烷酸、-烷醇和甾醇)所追踪的有机质反应性在 SWI 及其直接下方变化最大,与沉积学和生物活性直接相关,但在更深的沉积学变化中相对不变。本文是“变化的北极海洋:对生物群落、生物地球化学过程和生态系统功能的影响”主题问题的一部分。

相似文献

1
Transformation of organic matter in a Barents Sea sediment profile: coupled geochemical and microbiological processes.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20200223. doi: 10.1098/rsta.2020.0223. Epub 2020 Aug 31.
2
Does Arctic warming reduce preservation of organic matter in Barents Sea sediments?
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190364. doi: 10.1098/rsta.2019.0364. Epub 2020 Aug 31.
3
Benthic-pelagic coupling in the Barents Sea: an integrated data-model framework.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190359. doi: 10.1098/rsta.2019.0359. Epub 2020 Aug 31.
4
Climate change and diminishing seasonality in Arctic benthic processes.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190369. doi: 10.1098/rsta.2019.0369. Epub 2020 Aug 31.
5
Variation in zoobenthic blue carbon in the Arctic's Barents Sea shelf sediments.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190362. doi: 10.1098/rsta.2019.0362. Epub 2020 Aug 31.
6
Climate-driven benthic invertebrate activity and biogeochemical functioning across the Barents Sea polar front.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190365. doi: 10.1098/rsta.2019.0365. Epub 2020 Aug 31.
7
Benthic phosphorus cycling within the Eurasian marginal sea ice zone.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190358. doi: 10.1098/rsta.2019.0358. Epub 2020 Aug 31.
9
Complex Microbial Communities Drive Iron and Sulfur Cycling in Arctic Fjord Sediments.
Appl Environ Microbiol. 2019 Jul 1;85(14). doi: 10.1128/AEM.00949-19. Print 2019 Jul 15.
10
Annual cycle of downward particle fluxes on each side of the Gakkel Ridge in the central Arctic Ocean.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190368. doi: 10.1098/rsta.2019.0368. Epub 2020 Aug 31.

引用本文的文献

1
Structure of Benthic Microbial Communities in the Northeastern Part of the Barents Sea.
Microorganisms. 2024 Feb 15;12(2):387. doi: 10.3390/microorganisms12020387.
2
Microbial Communities Involved in Methane, Sulfur, and Nitrogen Cycling in the Sediments of the Barents Sea.
Microorganisms. 2021 Nov 15;9(11):2362. doi: 10.3390/microorganisms9112362.
3
Biogeochemical consequences of a changing Arctic shelf seafloor ecosystem.
Ambio. 2022 Feb;51(2):370-382. doi: 10.1007/s13280-021-01638-3. Epub 2021 Oct 9.
4
Climate-driven benthic invertebrate activity and biogeochemical functioning across the Barents Sea polar front.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190365. doi: 10.1098/rsta.2019.0365. Epub 2020 Aug 31.
5
The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20200266. doi: 10.1098/rsta.2020.0266. Epub 2020 Aug 31.

本文引用的文献

1
Climate-driven benthic invertebrate activity and biogeochemical functioning across the Barents Sea polar front.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190365. doi: 10.1098/rsta.2019.0365. Epub 2020 Aug 31.
2
Does Arctic warming reduce preservation of organic matter in Barents Sea sediments?
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190364. doi: 10.1098/rsta.2019.0364. Epub 2020 Aug 31.
3
Benthic-pelagic coupling in the Barents Sea: an integrated data-model framework.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190359. doi: 10.1098/rsta.2019.0359. Epub 2020 Aug 31.
4
Macrofaunal control of microbial community structure in continental margin sediments.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15911-15922. doi: 10.1073/pnas.1917494117. Epub 2020 Jun 23.
5
Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.
Nat Biotechnol. 2019 Aug;37(8):852-857. doi: 10.1038/s41587-019-0209-9.
6
Benthic macrofaunal bioturbation activities from shelf to deep basin in spring to summer transition in the Arctic Ocean.
Mar Environ Res. 2019 Sep;150:104746. doi: 10.1016/j.marenvres.2019.06.008. Epub 2019 Jun 10.
7
Complex Microbial Communities Drive Iron and Sulfur Cycling in Arctic Fjord Sediments.
Appl Environ Microbiol. 2019 Jul 1;85(14). doi: 10.1128/AEM.00949-19. Print 2019 Jul 15.
8
Comparative Genomics of Methylomirabilis Species and Description of . Methylomirabilis Lanthanidiphila.
Front Microbiol. 2018 Jul 24;9:1672. doi: 10.3389/fmicb.2018.01672. eCollection 2018.
10
Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments.
Sci Total Environ. 2017 Dec 31;607-608:23-31. doi: 10.1016/j.scitotenv.2017.06.187. Epub 2017 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验