Suppr超能文献

北极变暖是否会减少巴伦支海沉积物中有机质的保存?

Does Arctic warming reduce preservation of organic matter in Barents Sea sediments?

机构信息

School of Earth and Environment, The University of Leeds, Leeds, UK.

School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190364. doi: 10.1098/rsta.2019.0364. Epub 2020 Aug 31.

Abstract

Over the last few decades, the Barents Sea experienced substantial warming, an expansion of relatively warm Atlantic water and a reduction in sea ice cover. This environmental change forces the entire Barents Sea ecosystem to adapt and restructure and therefore changes in pelagic-benthic coupling, organic matter sedimentation and long-term carbon sequestration are expected. Here we combine new and existing organic and inorganic geochemical surface sediment data from the western Barents Sea and show a clear link between the modern ecosystem structure, sea ice cover and the organic carbon and CaCO contents in Barents Sea surface sediments. Furthermore, we discuss the sources of total and reactive iron phases and evaluate the spatial distribution of organic carbon bound to reactive iron. Consistent with a recent global estimate we find that on average 21.0 ± 8.3 per cent of the total organic carbon is associated to reactive iron (fOC-Fe) in Barents Sea surface sediments. The spatial distribution of fOC-Fe, however, seems to be unrelated to sea ice cover, Atlantic water inflow or proximity to land. Future Arctic warming might, therefore, neither increase nor decrease the burial rates of iron-associated organic carbon. However, our results also imply that ongoing sea ice reduction and the associated alteration of vertical carbon fluxes might cause accompanied shifts in the Barents Sea surface sedimentary organic carbon content, which might result in overall reduced carbon sequestration in the future. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.

摘要

在过去的几十年里,巴伦支海经历了显著的变暖、相对温暖的大西洋水的扩张以及海冰覆盖面积的减少。这种环境变化迫使整个巴伦支海生态系统适应和重组,因此预计浮游生物-底栖耦合、有机物质沉积和长期碳固存会发生变化。在这里,我们结合了来自巴伦支海西部的新的和现有的有机和无机地球化学表层沉积物数据,并显示了现代生态系统结构、海冰覆盖以及巴伦支海表层沉积物中有机碳和 CaCO3 含量之间的明确联系。此外,我们讨论了总铁相和反应性铁相的来源,并评估了与反应性铁结合的有机碳的空间分布。与最近的全球估计一致,我们发现巴伦支海表层沉积物中平均有 21.0±8.3%的总有机碳与反应性铁(fOC-Fe)有关。然而,fOC-Fe 的空间分布似乎与海冰覆盖、大西洋水流入或靠近陆地无关。未来北极地区的变暖可能不会增加或减少与铁相关的有机碳的埋藏速率。然而,我们的研究结果也意味着,正在进行的海冰减少以及由此引起的垂直碳通量的改变可能会导致巴伦支海表层沉积物中有机碳含量的伴随变化,这可能导致未来碳固存的总体减少。本文是“变化中的北极海洋:对生物群落、生物地球化学过程和生态系统功能的影响”主题特刊的一部分。

相似文献

1
Does Arctic warming reduce preservation of organic matter in Barents Sea sediments?
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190364. doi: 10.1098/rsta.2019.0364. Epub 2020 Aug 31.
2
Benthic phosphorus cycling within the Eurasian marginal sea ice zone.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190358. doi: 10.1098/rsta.2019.0358. Epub 2020 Aug 31.
3
Transformation of organic matter in a Barents Sea sediment profile: coupled geochemical and microbiological processes.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20200223. doi: 10.1098/rsta.2020.0223. Epub 2020 Aug 31.
4
Variation in zoobenthic blue carbon in the Arctic's Barents Sea shelf sediments.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190362. doi: 10.1098/rsta.2019.0362. Epub 2020 Aug 31.
5
Benthic-pelagic coupling in the Barents Sea: an integrated data-model framework.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190359. doi: 10.1098/rsta.2019.0359. Epub 2020 Aug 31.
6
Climate-driven benthic invertebrate activity and biogeochemical functioning across the Barents Sea polar front.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190365. doi: 10.1098/rsta.2019.0365. Epub 2020 Aug 31.
7
Climate change and diminishing seasonality in Arctic benthic processes.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190369. doi: 10.1098/rsta.2019.0369. Epub 2020 Aug 31.
8
Annual cycle of downward particle fluxes on each side of the Gakkel Ridge in the central Arctic Ocean.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190368. doi: 10.1098/rsta.2019.0368. Epub 2020 Aug 31.
9
Nitrate supply and uptake in the Atlantic Arctic sea ice zone: seasonal cycle, mechanisms and drivers.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190361. doi: 10.1098/rsta.2019.0361. Epub 2020 Aug 31.
10
Development of a bio-optical model for the Barents Sea to quantitatively link glider and satellite observations.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190367. doi: 10.1098/rsta.2019.0367. Epub 2020 Aug 31.

引用本文的文献

1
Biogeochemical consequences of a changing Arctic shelf seafloor ecosystem.
Ambio. 2022 Feb;51(2):370-382. doi: 10.1007/s13280-021-01638-3. Epub 2021 Oct 9.
2
Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments.
Nat Commun. 2021 Jan 12;12(1):275. doi: 10.1038/s41467-020-20550-0.
3
The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20200266. doi: 10.1098/rsta.2020.0266. Epub 2020 Aug 31.
4
Transformation of organic matter in a Barents Sea sediment profile: coupled geochemical and microbiological processes.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20200223. doi: 10.1098/rsta.2020.0223. Epub 2020 Aug 31.
5
Benthic-pelagic coupling in the Barents Sea: an integrated data-model framework.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190359. doi: 10.1098/rsta.2019.0359. Epub 2020 Aug 31.

本文引用的文献

1
Mineral protection regulates long-term global preservation of natural organic carbon.
Nature. 2019 Jun;570(7760):228-231. doi: 10.1038/s41586-019-1280-6. Epub 2019 Jun 12.
2
Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean.
Science. 2017 Apr 21;356(6335):285-291. doi: 10.1126/science.aai8204. Epub 2017 Apr 6.
4
Molecular Fractionation of Dissolved Organic Matter in a Shallow Subterranean Estuary: The Role of the Iron Curtain.
Environ Sci Technol. 2017 Feb 7;51(3):1312-1320. doi: 10.1021/acs.est.6b03608. Epub 2017 Jan 19.
5
Properties of Fe-organic matter associations via coprecipitation versus adsorption.
Environ Sci Technol. 2014 Dec 2;48(23):13751-9. doi: 10.1021/es503669u. Epub 2014 Nov 12.
6
Productivity in the barents sea--response to recent climate variability.
PLoS One. 2014 May 1;9(5):e95273. doi: 10.1371/journal.pone.0095273. eCollection 2014.
8
Ecological consequences of sea-ice decline.
Science. 2013 Aug 2;341(6145):519-24. doi: 10.1126/science.1235225.
9
Export of algal biomass from the melting Arctic sea ice.
Science. 2013 Mar 22;339(6126):1430-2. doi: 10.1126/science.1231346. Epub 2013 Feb 14.
10
Preservation of organic matter in sediments promoted by iron.
Nature. 2012 Mar 7;483(7388):198-200. doi: 10.1038/nature10855.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验