Abdullahi Ibrahim Munkaila, Langenderfer Martin, Shenderova Olga, Nunn Nicholas, Torelli Marco D, Johnson Catherine, Mochalin Vadym N
Department of Chemistry, Missouri University of Science & Technology, MO 65409, USA.
Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA.
Carbon N Y. 2020 Aug 30;164:442-450. doi: 10.1016/j.carbon.2020.03.057. Epub 2020 Apr 6.
Development of efficient and cost-effective mass-production techniques for size reduction of high- pressure, high-temperature (HPHT) diamonds with sizes from tens to hundreds of micrometers remains one of the primary goals towards commercial production of fluorescent submicron and nanodiamond (fND). fNDs offer great advantages for many applications, especially in labelling, tracing, and biomedical imaging, owing to their brightness, exceptional photostability, mechanical robustness and intrinsic biocompatibility. This study proposes a novel processing method utilizing explosive fragmentation that can potentially be used for the fabrication of submicron to nanoscale size fluorescent diamond particles. In the proposed method, synthetic HPHT 20 pm and 150 pm microcystalline diamond particles containing color centers are rapidly fragmented in conditions of high explosive detonation. X-ray diffraction and Raman spectroscopy show that the detonation fragmented diamond particles consist of good quality submicron diamonds of ~420-800 nm in size, while fluorescence spectroscopy shows photoluminescence spectra with noticeable changes for large (150 μm) starting microcrystalline diamond particles, and no significant changes in photoluminescence properties for smaller (20 μm) starting microcrystalline diamond particles. The proposed detonation method shows potential as an efficient, cost effective, and industrially scalable alternative to milling for the fragmentation of fluorescent diamond microcrystals into submicron- to nano-size domain.
开发高效且经济高效的大规模生产技术,用于将尺寸从几十微米到几百微米的高压高温(HPHT)钻石进行尺寸缩减,仍然是实现荧光亚微米和纳米金刚石(fND)商业化生产的主要目标之一。由于其亮度、出色的光稳定性、机械坚固性和内在生物相容性,fND在许多应用中具有巨大优势,尤其是在标记、追踪和生物医学成像方面。本研究提出了一种利用爆炸破碎的新型加工方法,该方法有可能用于制造亚微米到纳米级尺寸的荧光金刚石颗粒。在所提出的方法中,含有色心的合成HPHT 20微米和150微米微晶金刚石颗粒在高爆炸药爆轰条件下迅速破碎。X射线衍射和拉曼光谱表明,爆轰破碎的金刚石颗粒由尺寸约为420 - 800纳米的高质量亚微米金刚石组成,而荧光光谱显示,对于大尺寸(150微米)的起始微晶金刚石颗粒,光致发光光谱有明显变化,对于较小尺寸(20微米)的起始微晶金刚石颗粒,光致发光特性没有显著变化。所提出的爆轰方法显示出作为一种高效、经济且可工业扩展的替代研磨方法的潜力,可将荧光金刚石微晶破碎成亚微米到纳米尺寸范围。