Suppr超能文献

非线性模型及右删失事件发生时间数据的预测准确性度量

Prediction Accuracy Measures for a Nonlinear Model and for Right-Censored Time-to-Event Data.

作者信息

Li Gang, Wang Xiaoyan

机构信息

Departments of Biostatistics and Biomathematics, University of California, Los Angeles, CA.

Division of General Internal Medicine and Health Services Research, University of California, Los Angeles, CA.

出版信息

J Am Stat Assoc. 2019;114(528):1815-1825. doi: 10.1080/01621459.2018.1515079. Epub 2019 Mar 11.

Abstract

This article develops a pair of new prediction summary measures for a nonlinear prediction function with right-censored time-to-event data. The first measure, defined as the proportion of explained variance by a linearly corrected prediction function, quantifies the potential predictive power of the nonlinear prediction function. The second measure, defined as the proportion of explained prediction error by its corrected prediction function, gauges the closeness of the prediction function to its corrected version and serves as a supplementary measure to indicate (by a value less than 1) whether the correction is needed to fulfill its potential predictive power and quantify how much prediction error reduction can be realized with the correction. The two measures together provide a complete summary of the predictive accuracy of the nonlinear prediction function. We motivate these measures by first establishing a variance decomposition and a prediction error decomposition at the population level and then deriving uncensored and censored sample versions of these decompositions. We note that for the least square prediction function under the linear model with no censoring, the first measure reduces to the classical coefficient of determination and the second measure degenerates to 1. We show that the sample measures are consistent estimators of their population counterparts and conduct extensive simulations to investigate their finite sample properties. A real data illustration is provided using the PBC data. Supplementary materials for this article are available online. An R package PAmeasures has been developed and made available via the CRAN R library. Supplementary materials for this article are available online.

摘要

本文针对具有右删失事件发生时间数据的非线性预测函数,开发了一对新的预测性总结度量。第一个度量定义为线性校正预测函数所解释的方差比例,用于量化非线性预测函数的潜在预测能力。第二个度量定义为其校正预测函数所解释的预测误差比例,用于衡量预测函数与其校正版本的接近程度,并作为一种补充度量来表明(通过小于1的值)是否需要进行校正以实现其潜在预测能力,以及量化校正可以实现多少预测误差的减少。这两个度量共同提供了非线性预测函数预测准确性的完整总结。我们首先在总体层面建立方差分解和预测误差分解,然后推导这些分解的无删失和删失样本版本,以此来推动这些度量的提出。我们注意到,对于无删失的线性模型下的最小二乘预测函数,第一个度量简化为经典的决定系数,第二个度量退化为1。我们表明,样本度量是其总体对应物的一致估计量,并进行了广泛的模拟以研究它们的有限样本性质。使用原发性胆汁性胆管炎(PBC)数据给出了一个实际数据示例。本文的补充材料可在线获取。已开发了一个R包PAmeasures,并通过CRAN R库提供。本文的补充材料可在线获取。

相似文献

2
-sample omnibus non-proportional hazards tests based on right-censored data.基于右删失数据的样本综合非比例风险测试
Stat Methods Med Res. 2020 Oct;29(10):2830-2850. doi: 10.1177/0962280220907355. Epub 2020 Mar 18.
6
Evaluation of longevity modeling censored records in Nellore.内洛尔牛长寿建模删失记录的评估
Animal. 2017 Dec;11(12):2113-2119. doi: 10.1017/S1751731117001136. Epub 2017 May 23.
7
Interval censored recursive forests.区间删失递归森林
J Comput Graph Stat. 2022;31(2):390-402. doi: 10.1080/10618600.2021.1987253. Epub 2021 Nov 17.
8
Threshold regression to accommodate a censored covariate.用于处理删失协变量的阈值回归。
Biometrics. 2018 Dec;74(4):1261-1270. doi: 10.1111/biom.12922. Epub 2018 Jun 22.
9
A Study of Measure under the Accelerated Failure Time Models.加速失效时间模型下的测量研究
Commun Stat Simul Comput. 2018;47(2):380-391. doi: 10.1080/03610918.2016.1177072. Epub 2018 Jan 1.

引用本文的文献

10
Survival Forests with R-Squared Splitting Rules.具有R平方分割规则的生存森林
J Comput Biol. 2018 Apr;25(4):388-395. doi: 10.1089/cmb.2017.0107. Epub 2017 Dec 21.

本文引用的文献

1
A measure of explained variation for event history data.事件历史数据的解释变异量度。
Biometrics. 2011 Sep;67(3):750-9. doi: 10.1111/j.1541-0420.2010.01526.x. Epub 2010 Dec 14.
4
Summarizing the predictive power of a generalized linear model.总结广义线性模型的预测能力。
Stat Med. 2000 Jul 15;19(13):1771-81. doi: 10.1002/1097-0258(20000715)19:13<1771::aid-sim485>3.0.co;2-p.
5
Predictive accuracy and explained variation in Cox regression.Cox回归中的预测准确性和解释变异
Biometrics. 2000 Mar;56(1):249-55. doi: 10.1111/j.0006-341x.2000.00249.x.
6
Assessment and comparison of prognostic classification schemes for survival data.生存数据预后分类方案的评估与比较
Stat Med. 1999;18(17-18):2529-45. doi: 10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5.
7
R2: a useful measure of model performance when predicting a dichotomous outcome.R2:在预测二分结果时衡量模型性能的一个有用指标。
Stat Med. 1999 Feb 28;18(4):375-84. doi: 10.1002/(sici)1097-0258(19990228)18:4<375::aid-sim20>3.0.co;2-j.
8
Explained variation for logistic regression.逻辑回归的解释变异
Stat Med. 1996 Oct 15;15(19):1987-97. doi: 10.1002/(SICI)1097-0258(19961015)15:19<1987::AID-SIM318>3.0.CO;2-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验