Suppr超能文献

通过数据增强用二十个样本进行 CNN 裂缝检测训练。

CNN Training with Twenty Samples for Crack Detection via Data Augmentation.

机构信息

State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Sensors (Basel). 2020 Aug 27;20(17):4849. doi: 10.3390/s20174849.

Abstract

The excellent generalization ability of deep learning methods, e.g., convolutional neural networks (CNNs), depends on a large amount of training data, which is difficult to obtain in industrial practices. Data augmentation is regarded commonly as an effective strategy to address this problem. In this paper, we attempt to construct a crack detector based on CNN with twenty images via a two-stage data augmentation method. In detail, nine data augmentation methods are compared for crack detection in the model training, respectively. As a result, the rotation method outperforms these methods for augmentation, and by an in-depth exploration of the rotation method, the performance of the detector is further improved. Furthermore, data augmentation is also applied in the inference process to improve the recall of trained models. The identical object has more chances to be detected in the series of augmented images. This trick is essentially a performance-resource trade-off. For more improvement with limited resources, the greedy algorithm is adopted for searching a better combination of data augmentation. The results show that the crack detectors trained on the small dataset are significantly improved via the proposed two-stage data augmentation. Specifically, using 20 images for training, recall in detecting the cracks achieves 96% and Fext(0.8), which is a variant of F-score for crack detection, achieves 91.18%.

摘要

深度学习方法(例如卷积神经网络 (CNN))具有出色的泛化能力,这依赖于大量的训练数据,而在工业实践中,这是难以获取的。数据增强通常被视为解决这个问题的有效策略。在本文中,我们尝试通过两阶段数据增强方法,使用二十张图像构建一个基于 CNN 的裂纹检测器。具体来说,分别在模型训练中比较了九种数据增强方法用于裂纹检测。结果表明,旋转方法在增强方面优于其他方法,通过对旋转方法的深入探索,进一步提高了检测器的性能。此外,还在推理过程中应用数据增强来提高训练模型的召回率。相同的物体在一系列增强图像中被检测到的机会更多。这种技巧本质上是一种性能-资源的权衡。为了在有限的资源下获得更多的改进,采用贪婪算法搜索更好的数据增强组合。结果表明,通过提出的两阶段数据增强,基于小数据集训练的裂纹检测器得到了显著的提高。具体来说,使用 20 张图像进行训练,检测裂纹的召回率达到 96%,裂纹检测的 Fext(0.8)达到 91.18%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验