Suppr超能文献

通过组合封装报告分子在金属纳米壳中,得到一个扩展的表面增强拉曼散射标签文库。

An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells.

机构信息

CINBIO, Universidade de Vigo, Departamento de Quı́mica Fı́sica, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain.

Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain.

出版信息

ACS Nano. 2020 Nov 24;14(11):14655-14664. doi: 10.1021/acsnano.0c04368. Epub 2020 Oct 5.

Abstract

Raman-encoded gold nanoparticles (NPs) have been widely employed as photostable multifunctional probes for sensing, bioimaging, multiplex diagnostics, and surface-enhanced Raman scattering (SERS)-guided tumor therapy. We report a strategy toward obtaining a particularly large library of Au nanocapsules encoded with Raman codes defined by the combination of different thiol-free Raman reporters, encapsulated at defined molar ratios. The fabrication of SERS tags with tailored size and predefined codes is based on the incorporation of Raman reporter molecules inside Au nanocapsules during their formation galvanic replacement coupled to seeded growth on Ag NPs. The hole-free closed-shell structure of the nanocapsules is confirmed by electron tomography. The unusually wide encoding possibilities of the obtained SERS tags are investigated by means of either wavenumber-based encoding or Raman frequency combined with signal intensity, leading to an outstanding performance as exemplified by 26 and 54 different codes, respectively. We additionally demonstrate that encoded nanocapsules can be readily bioconjugated with antibodies for applications such as SERS-based targeted cell imaging and phenotyping.

摘要

基于表面增强拉曼散射(SERS)的肿瘤治疗,拉曼编码金纳米粒子(NPs)已被广泛用作传感、生物成像、多重诊断和多功能探针。我们报告了一种策略,通过组合不同的无硫醇拉曼报告分子,以确定的摩尔比封装,可以得到具有拉曼编码的金纳米胶囊的大型文库。具有预定编码和尺寸的 SERS 标签的制造是基于在 Au 纳米胶囊形成过程中,通过电置换偶联到 Ag NPs 上的种子生长,将拉曼报告分子掺入到纳米胶囊内。通过电子断层摄影术证实了纳米胶囊无孔的闭壳结构。通过波数编码或拉曼频率与信号强度相结合的方式研究了所获得的 SERS 标签的异常广泛的编码可能性,分别实现了 26 种和 54 种不同代码的出色性能。我们还证明了编码纳米胶囊可以与抗体进行轻易的生物偶联,可用于基于 SERS 的靶向细胞成像和表型分析等应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1039/7690041/c7fbe43916bd/nn0c04368_0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验