Duan Hong-Guang, Tiwari Vandana, Jha Ajay, Berdiyorov Golibjon R, Akimov Alexey, Vendrell Oriol, Nayak Pabitra K, Snaith Henry J, Thorwart Michael, Li Zheng, Madjet Mohamed E, Miller R J Dwayne
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.
I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, Hamburg 20355, Germany.
J Am Chem Soc. 2020 Sep 30;142(39):16569-16578. doi: 10.1021/jacs.0c03970. Epub 2020 Sep 15.
The success of organic-inorganic perovskites in optoelectronics is dictated by the complex interplay between various underlying microscopic phenomena. The structural dynamics of organic cations and the inorganic sublattice after photoexcitation are hypothesized to have a direct effect on the material properties, thereby affecting the overall device performance. Here, we use ultrafast heterodyne-detected two-dimensional (2D) electronic spectroscopy to reveal impulsively excited vibrational modes of methylammonium (MA) lead iodide perovskite, which drive the structural distortion after photoexcitation. Vibrational analysis of the measured data allows us to monitor the time-evolved librational motion of the MA cation along with the vibrational coherences of the inorganic sublattice. Wavelet analysis of the observed vibrational coherences reveals the coherent generation of the librational motion of the MA cation within ∼300 fs complemented with the coherent evolution of the inorganic skeletal motion. To rationalize this observation, we employed the configuration interaction singles (CIS), which support our experimental observations of the coherent generation of librational motions in the MA cation and highlight the importance of the anharmonic interaction between the MA cation and the inorganic sublattice. Moreover, our advanced theoretical calculations predict the transfer of the photoinduced vibrational coherence from the MA cation to the inorganic sublattice, leading to reorganization of the lattice to form a polaronic state with a long lifetime. Our study uncovers the interplay of the organic cation and inorganic sublattice during formation of the polaron, which may lead to novel design principles for the next generation of perovskite solar cell materials.
有机-无机钙钛矿在光电子学领域的成功取决于各种潜在微观现象之间复杂的相互作用。光激发后有机阳离子和无机亚晶格的结构动力学被认为对材料性能有直接影响,从而影响整个器件的性能。在此,我们使用超快外差检测二维(2D)电子光谱来揭示甲基铵(MA)碘化铅钙钛矿的脉冲激发振动模式,该模式在光激发后驱动结构畸变。对测量数据的振动分析使我们能够监测MA阳离子随时间演化的摆动运动以及无机亚晶格的振动相干性。对观察到的振动相干性进行小波分析,揭示了MA阳离子摆动运动在约300飞秒内的相干产生,并伴随着无机骨架运动的相干演化。为合理解释这一观察结果,我们采用了单激发组态相互作用(CIS)方法,该方法支持我们关于MA阳离子中摆动运动相干产生的实验观察结果,并突出了MA阳离子与无机亚晶格之间非谐相互作用的重要性。此外,我们先进的理论计算预测了光致振动相干性从MA阳离子转移到无机亚晶格,导致晶格重组形成具有长寿命的极化子态。我们的研究揭示了极化子形成过程中有机阳离子和无机亚晶格的相互作用,这可能为下一代钙钛矿太阳能电池材料带来新的设计原则。
J Am Chem Soc. 2020-9-30
J Phys Chem Lett. 2015-9-17
J Phys Chem Lett. 2015-8-6
ACS Phys Chem Au. 2024-10-2
Chem Rev. 2023-7-12
Phys Rev Lett. 2019-4-26
J Phys Chem Lett. 2018-12-6