Li Beiye C, Lin Kailai, Wu Ping-Jui E, Gupta Aritrajit, Peng Kaiyue, Sohoni Siddhartha, Ondry Justin C, Zhou Zirui, Bellora Caitlin C, Ryu Young Jay, Chariton Stella, Gosztola David J, Prakapenka Vitali B, Schaller Richard D, Talapin Dmitri V, Rabani Eran, Engel Gregory S
Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
Nat Commun. 2025 May 13;16(1):4424. doi: 10.1038/s41467-025-58800-8.
Quantum dots leverage quantum confinement to modify the electronic structure of materials, separating electronic transitions from the composition of the corresponding bulk material. With ternary quantum dots, the composition may be varied continuously so that both composition and size may be used to tune the bandgap. As composition influences electron-phonon coupling which in turn governs relaxation dynamics, the composition of ternary quantum dots may be adjusted to change dynamics. Here, we show that exciton-phonon coupling and phonon-assisted exciton relaxation dynamics remain strongly correlated to material composition in ternary InGaP/ZnS and InGaP/ZnS quantum dots using both experimental two-dimensional electronic spectroscopy measurements and quantum dynamical simulations. Theoretical calculations show that alloyed InGaP quantum dots have more complex exciton level structure than parent InP quantum dots. We identify a slower hot exciton cooling rate in InGaP/ZnS, attributed to the presence of 'energy-retaining' valley exciton states with strong exciton-phonon coupling. Experimental quantum beating maps reveal a more localized quantum beat pattern for InGaP/ZnS quantum dots, which may relate to the increased number of 'dim' exciton levels with reduced spacings. These findings highlight that exciton relaxation dynamics and exciton-phonon coupling in an alloyed InGaP quantum dot system are composition-dependent.
量子点利用量子限域效应来改变材料的电子结构,将电子跃迁与相应体材料的组成区分开来。对于三元量子点,其组成可以连续变化,因此组成和尺寸都可用于调节带隙。由于组成会影响电子 - 声子耦合,而电子 - 声子耦合又控制着弛豫动力学,所以可以通过调整三元量子点的组成来改变动力学。在此,我们利用二维电子光谱实验测量和量子动力学模拟表明,在三元InGaP/ZnS和InGaP/ZnS量子点中,激子 - 声子耦合和声子辅助激子弛豫动力学与材料组成仍紧密相关。理论计算表明,合金化的InGaP量子点比母体InP量子点具有更复杂的激子能级结构。我们发现在InGaP/ZnS中热激子冷却速率较慢,这归因于存在具有强激子 - 声子耦合的“能量保留”谷激子态。实验量子拍频图谱揭示了InGaP/ZnS量子点具有更局域化的量子拍频模式,这可能与间距减小的“暗”激子能级数量增加有关。这些发现突出表明,合金化InGaP量子点系统中的激子弛豫动力学和激子 - 声子耦合取决于组成。