Suppr超能文献

罗塞塔机器学习模型准确分类硫代酰胺对蛋白水解的位置效应。

Rosetta Machine Learning Models Accurately Classify Positional Effects of Thioamides on Proteolysis.

作者信息

Giannakoulias Sam, Shringari Sumant R, Liu Chunxiao, Phan Hoang Anh T, Barrett Taylor M, Ferrie John J, Petersson E James

机构信息

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

J Phys Chem B. 2020 Sep 17;124(37):8032-8041. doi: 10.1021/acs.jpcb.0c05981. Epub 2020 Sep 1.

Abstract

Thioamide substitutions of the peptide backbone have been shown to stabilize therapeutic and imaging peptides toward proteolysis. In order to rationally design thioamide modifications, we have developed a novel Rosetta custom score function to classify thioamide positional effects on proteolysis in substrates of serine and cysteine proteases. Peptides of interest were docked into proteases using the FlexPepDock application in Rosetta. Docked complexes were modified to contain thioamides parametrized through the creation of custom atom types in Rosetta based on simulations. Thioamide complexes were simulated, and the resultant structural complexes provided features for machine learning classification as the decomposed values of the Rosetta score function. An ensemble, majority voting model was developed to be a robust predictor of previously unpublished thioamide proteolysis holdout data. Theoretical control simulations with pseudo-atoms that modulate only one physical characteristic of the thioamide show differential effects on prediction accuracy by the optimized voting classification model. These pseudo-atom model simulations, as well as statistical analyses of the full thioamide simulations, implicate steric effects on peptide binding as being primarily responsible for thioamide positional effects on proteolytic resistance.

摘要

肽主链的硫代酰胺取代已被证明可稳定治疗性和成像肽免受蛋白水解。为了合理设计硫代酰胺修饰,我们开发了一种新型的Rosetta自定义评分函数,以对丝氨酸和半胱氨酸蛋白酶底物中硫代酰胺对蛋白水解的位置效应进行分类。使用Rosetta中的FlexPepDock应用程序将感兴趣的肽对接至蛋白酶中。对接复合物经过修饰,以包含通过基于模拟在Rosetta中创建自定义原子类型而参数化的硫代酰胺。对硫代酰胺复合物进行模拟,所得的结构复合物为机器学习分类提供了特征,作为Rosetta评分函数的分解值。开发了一种集成的多数投票模型,作为对以前未发表的硫代酰胺蛋白水解保留数据的强大预测器。用仅调节硫代酰胺一种物理特性的伪原子进行的理论对照模拟显示,优化的投票分类模型对预测准确性有不同影响。这些伪原子模型模拟以及对完整硫代酰胺模拟的统计分析表明,肽结合上的空间效应是硫代酰胺对蛋白水解抗性位置效应的主要原因。

相似文献

7
Hydrogen Bond and Geometry Effects of Thioamide Backbone Modifications.硫代酰胺骨架修饰的氢键和几何效应。
J Org Chem. 2021 Dec 17;86(24):18287-18291. doi: 10.1021/acs.joc.1c02373. Epub 2021 Dec 1.
8
Opportunities and challenges in the synthesis of thioamidated peptides.硫酰胺化肽合成中的机遇与挑战。
Methods Enzymol. 2021;656:27-57. doi: 10.1016/bs.mie.2021.04.018. Epub 2021 May 21.
10
Ynamide-Mediated Thioamide and Primary Thioamide Syntheses.亚胺介导的硫代酰胺和伯硫代酰胺合成。
J Org Chem. 2022 May 6;87(9):5617-5629. doi: 10.1021/acs.joc.1c03076. Epub 2022 Apr 8.

引用本文的文献

1
Peptide vaccines get an OS update.肽疫苗获得总生存期更新。
Nat Chem Biol. 2024 May;20(5):549-550. doi: 10.1038/s41589-024-01608-2.
2
Thioamide Analogues of MHC I Antigen Peptides.硫酰胺类 MHC I 抗原肽类似物。
J Am Chem Soc. 2023 Nov 29;145(47):25559-25569. doi: 10.1021/jacs.3c05300. Epub 2023 Nov 15.
6
Structural impact of thioamide incorporation into a β-hairpin.硫代酰胺掺入β-发夹结构的影响
RSC Chem Biol. 2022 Apr 5;3(5):582-591. doi: 10.1039/d1cb00229e. eCollection 2022 May 11.
9

本文引用的文献

4
Macrocyclic Control in Helix Mimetics.大环控制在螺旋拟肽中的应用。
Chem Rev. 2019 Sep 11;119(17):9915-9949. doi: 10.1021/acs.chemrev.8b00623. Epub 2019 May 2.
6
Biosynthesis and Chemical Applications of Thioamides.硫代酰胺的生物合成与化学应用。
ACS Chem Biol. 2019 Feb 15;14(2):142-163. doi: 10.1021/acschembio.8b01022. Epub 2019 Jan 30.
10
The Current State of Peptide Drug Discovery: Back to the Future?肽类药物发现的现状:回到未来?
J Med Chem. 2018 Feb 22;61(4):1382-1414. doi: 10.1021/acs.jmedchem.7b00318. Epub 2017 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验