Suppr超能文献

基于奇异值分解的最大泊松磁盘采样的自适应数字高程模型简化。

A Singular Value Decomposition based Maximal Poisson-disk Sampling for adaptive Digital Elevation Model simplification.

机构信息

China Energy Engineering Group Gansu Electronic Power Design Institute Co. Ltd, Lanzhou, China.

College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.

出版信息

PLoS One. 2020 Sep 1;15(9):e0238294. doi: 10.1371/journal.pone.0238294. eCollection 2020.

Abstract

The proposed method is to do simplification for Digital Elevation Model (DEM), which uses a few of original nodes representing the terrain surface while maintaining the accuracy. The original DEM nodes are sampled using the Maximal Poisson-disk Sampling (MPS), in which, the disk's size of each sample is computed on basis of the Singular Value Decomposition (SVD). MPS can generate the hyper-uniformly distributed samples and was taken to do DEM adaptive sampling by being combined with the geodesic metric. However, the geodesic distance computation is complex and the requirement for memory is high. As such, this paper proposes an extension of the classic MPS based method for selecting quasi-randomly distributed points from DEM nodes based on the distribution of eigenvalues, accounting for surface heterogeneity. To achieve this objective, uniform MPS is conducted to sample the DEM nodes by setting the related disk radius to be inversely proportional to the local terrain complexity, which is defined as an index expressing the local terrain variation. Then, the geodesic metric related parameters are implicitly contained in the defined index. As a result, more samples are concentrated in the rugged regions, and vice versa. The proposed method shows better perfermance, at least the results are comparable with the geodesic distance based Poisson disk sampling method. Meanwhile, it greatly accelerates the sampling process and reduces the memory cost.

摘要

所提出的方法是对数字高程模型(DEM)进行简化,该方法使用少量原始节点来表示地形表面,同时保持精度。原始 DEM 节点使用最大泊松圆盘采样(MPS)进行采样,其中每个样本的圆盘大小是根据奇异值分解(SVD)计算的。MPS 可以生成超均匀分布的样本,并通过与测地线度量相结合来进行 DEM 自适应采样。然而,测地线距离的计算复杂,对内存的要求也很高。因此,本文提出了一种基于经典 MPS 的扩展方法,用于从 DEM 节点中根据特征值分布选择准随机分布的点,以考虑表面异质性。为了实现这一目标,通过将相关磁盘半径设置为与局部地形复杂度成反比(局部地形复杂度定义为表示局部地形变化的指标),均匀 MPS 对 DEM 节点进行采样。然后,定义的指标中隐含地包含了测地线度量的相关参数。结果是,更多的样本集中在崎岖的区域,反之亦然。所提出的方法表现出更好的性能,至少结果与基于测地线距离的泊松圆盘采样方法相当。同时,它大大加速了采样过程并降低了内存成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73c8/7462260/cecb2b844e4b/pone.0238294.g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验