Suppr超能文献

使用列线图模型挖掘广泛期小细胞肺癌患者的预后因素。

Mining prognostic factors of extensive-stage small-cell lung cancer patients using nomogram model.

作者信息

Gao Hongxiang, Dang Yazheng, Qi Tao, Huang Shigao, Zhang Xiaozhi

机构信息

Radiotherapy Department, The First Affiliated Hospital of Xi'an Jiaotong University.

Department of Oncology, Chang An Hospital.

出版信息

Medicine (Baltimore). 2020 Aug 14;99(33):e21798. doi: 10.1097/MD.0000000000021798.

Abstract

This study is to establish the nomogram model and provide clinical therapy decision-making for extensive-stage small-cell lung cancer (ES-SCLC) patients with different metastatic sites using the Surveillance, Epidemiology, and End Results (SEER) Program.A total of 10,025 patients of ES-SCLC with metastasis from January 2010 to December 2016 were enrolled from the SEER database. All samples were randomly divided into a derivation cohort and a validation cohort, and the derivation cohort was divided into 6 groups by different metastatic sites: bone, liver, lung, brain, multiple organs, and other organs. Using Cox proportional hazards models to analyze candidate prognostic factors, screening out the independent prognostic factors to establish the nomogram. Compare the different models by Net reclassification improvement and integrated discrimination improvement. Concordance index (C-index) and the calibration curve were used to verify the prediction efficiency of the nomogram in the derivation cohort and validation cohort.In the derivation cohort, the median overall survival was 7 months. The overall survival rates at 6-month, 1-year, and 2-year were 55.07%, 24.61%, and 7.56%, respectively. The median survival time was 10, 8, 7, 9, 7, and 6 months for the 6 groups of different metastatic sites: other, bone, liver, lung, brain, and multiple organs, respectively. Age, sex, race, T, N, distant metastatic site, and chemotherapy were contained in the final nomogram prognostic model. The C-index was 0.6569777 in the derivation cohort and 0.8386301 in the validation cohort.The survival time of ES-SCLC patients with different metastatic sites was significantly different. The nomogram can effectively predict the prognosis of individuals and provide a basis for clinical decision-making.

摘要

本研究旨在利用监测、流行病学和最终结果(SEER)计划建立列线图模型,为不同转移部位的广泛期小细胞肺癌(ES-SCLC)患者提供临床治疗决策依据。从SEER数据库中纳入了2010年1月至2016年12月期间共10025例发生转移的ES-SCLC患者。所有样本被随机分为一个推导队列和一个验证队列,推导队列根据不同转移部位分为6组:骨、肝、肺、脑、多个器官和其他器官。使用Cox比例风险模型分析候选预后因素,筛选出独立预后因素以建立列线图。通过净重新分类改善和综合判别改善比较不同模型。采用一致性指数(C-index)和校准曲线验证列线图在推导队列和验证队列中的预测效率。

在推导队列中,中位总生存期为7个月。6个月、1年和2年的总生存率分别为55.07%、24.61%和7.56%。不同转移部位的6组患者的中位生存时间分别为:其他、骨、肝、肺、脑和多个器官,分别为10、8、7、9、7和6个月。最终的列线图预后模型包含年龄、性别、种族、T分期、N分期、远处转移部位和化疗。推导队列中的C-index为0.6569777,验证队列中的C-index为0.8386301。

不同转移部位的ES-SCLC患者的生存时间存在显著差异。列线图可以有效预测个体预后,为临床决策提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/406b/7437828/0db8d31b7263/medi-99-e21798-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验