Suppr超能文献

一种用于非酒精性脂肪性肝炎(NASH)临床试验精确筛选和入组的改进型qFibrosis算法

An Improved qFibrosis Algorithm for Precise Screening and Enrollment into Non-Alcoholic Steatohepatitis (NASH) Clinical Trials.

作者信息

Leow Wei-Qiang, Bedossa Pierre, Liu Feng, Wei Lai, Lim Kiat-Hon, Wan Wei-Keat, Ren Yayun, Chang Jason Pik-Eu, Tan Chee-Kiat, Wee Aileen, Goh George Boon-Bee

机构信息

Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore.

Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore.

出版信息

Diagnostics (Basel). 2020 Aug 28;10(9):643. doi: 10.3390/diagnostics10090643.

Abstract

BACKGROUND

Many clinical trials with potential drug treatment options for non-alcoholic fatty liver disease (NAFLD) are focused on patients with non-alcoholic steatohepatitis (NASH) stages 2 and 3 fibrosis. As the histological features differentiating stage 1 (F1) from stage 2 (F2) NASH fibrosis are subtle, some patients may be wrongly staged by the in-house pathologist and miss the opportunity for enrollment into clinical trials. We hypothesized that our refined artificial intelligence (AI)-based algorithm (qFibrosis) can identify these subtle differences and serve as an assistive tool for in-house pathologists.

METHODS

Liver tissue from 160 adult patients with biopsy-proven NASH from Singapore General Hospital (SGH) and Peking University People's Hospital (PKUH) were used. A consensus read by two expert hepatopathologists was organized. The refined qFibrosis algorithm incorporated the creation of a periportal region that allowed for the increased detection of periportal fibrosis. Consequently, an additional 28 periportal parameters were added, and 28 pre-existing perisinusoidal parameters had altered definitions.

RESULTS

Twenty-eight parameters (20 periportal and 8 perisinusoidal) were significantly different between the F1 and F2 cases that prompted a change of stage after a careful consensus read. The discriminatory ability of these parameters was further demonstrated in a comparison between the true F1 and true F2 cases as 26 out of the 28 parameters showed significant differences. These 26 parameters constitute a novel sub-algorithm that could accurately stratify F1 and F2 cases.

CONCLUSION

The refined qFibrosis algorithm incorporated 26 novel parameters that showed a good discriminatory ability for NASH fibrosis stage 1 and 2 cases, representing an invaluable assistive tool for in-house pathologists when screening patients for NASH clinical trials.

摘要

背景

许多针对非酒精性脂肪性肝病(NAFLD)潜在药物治疗方案的临床试验都聚焦于非酒精性脂肪性肝炎(NASH)2期和3期纤维化患者。由于区分NASH 1期(F1)和2期(F2)纤维化的组织学特征很细微,一些患者可能会被内部病理学家错误分期,从而错过参加临床试验的机会。我们假设,我们改进的基于人工智能(AI)的算法(qFibrosis)可以识别这些细微差异,并作为内部病理学家的辅助工具。

方法

使用了来自新加坡总医院(SGH)和北京大学人民医院(PKUH)的160例经活检证实为NASH的成年患者的肝组织。组织了两位专家肝病病理学家的一致解读。改进后的qFibrosis算法纳入了门静脉周围区域的创建,这有助于增加门静脉周围纤维化的检测。因此,额外增加了28个门静脉周围参数,并且对28个现有的窦周参数的定义进行了修改。

结果

在经过仔细的一致解读后,F1和F2病例之间有28个参数(20个门静脉周围参数和8个窦周参数)存在显著差异,这些差异促使分期发生了变化。在真实的F1和真实的F2病例之间的比较中,进一步证明了这些参数的鉴别能力,因为28个参数中有26个显示出显著差异。这26个参数构成了一个新的子算法,可以准确地对F1和F2病例进行分层。

结论

改进后的qFibrosis算法纳入了26个新参数,这些参数对NASH纤维化1期和2期病例具有良好的鉴别能力,是内部病理学家在筛选NASH临床试验患者时非常有价值的辅助工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验