Nam David, Chapiro Julius, Paradis Valerie, Seraphin Tobias Paul, Kather Jakob Nikolas
Section of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
INSERM U1149 "Centre de Recherche Sur L'inflammation", CRI, Université de Paris, Paris, France.
JHEP Rep. 2022 Feb 2;4(4):100443. doi: 10.1016/j.jhepr.2022.100443. eCollection 2022 Apr.
Clinical routine in hepatology involves the diagnosis and treatment of a wide spectrum of metabolic, infectious, autoimmune and neoplastic diseases. Clinicians integrate qualitative and quantitative information from multiple data sources to make a diagnosis, prognosticate the disease course, and recommend a treatment. In the last 5 years, advances in artificial intelligence (AI), particularly in deep learning, have made it possible to extract clinically relevant information from complex and diverse clinical datasets. In particular, histopathology and radiology image data contain diagnostic, prognostic and predictive information which AI can extract. Ultimately, such AI systems could be implemented in clinical routine as decision support tools. However, in the context of hepatology, this requires further large-scale clinical validation and regulatory approval. Herein, we summarise the state of the art in AI in hepatology with a particular focus on histopathology and radiology data. We present a roadmap for the further development of novel biomarkers in hepatology and outline critical obstacles which need to be overcome.
肝病学的临床常规工作包括对多种代谢性、感染性、自身免疫性和肿瘤性疾病的诊断和治疗。临床医生整合来自多个数据源的定性和定量信息以进行诊断、预测疾病进程并推荐治疗方案。在过去五年中,人工智能(AI)的进展,尤其是深度学习方面的进展,使得从复杂多样的临床数据集中提取临床相关信息成为可能。特别是,组织病理学和放射学图像数据包含人工智能可以提取的诊断、预后和预测信息。最终,此类人工智能系统可作为决策支持工具应用于临床常规工作。然而,在肝病学领域,这需要进一步的大规模临床验证和监管批准。在此,我们总结了肝病学中人工智能的最新进展,特别关注组织病理学和放射学数据。我们提出了肝病学中新型生物标志物进一步发展的路线图,并概述了需要克服的数据