Suppr超能文献

基于迁移学习的HPV疫苗相关推文情感分析方法

Sentiment Analysis Methods for HPV VaccinesRelated Tweets Based on Transfer Learning.

作者信息

Zhang Li, Fan Haimeng, Peng Chengxia, Rao Guozheng, Cong Qing

机构信息

School of Economics and Management, Tianjin University of Science and Technology, Tianjin 300457, China.

College of Intelligence and Computing, Tianjin University, Tianjin 300350, China.

出版信息

Healthcare (Basel). 2020 Aug 28;8(3):307. doi: 10.3390/healthcare8030307.

Abstract

The widespread use of social media provides a large amount of data for public sentimentanalysis. Based on social media data, researchers can study public opinions on humanpapillomavirus (HPV) vaccines on social media using machine learning-based approaches that willhelp us understand the reasons behind the low vaccine coverage. However, social media data isusually unannotated, and data annotation is costly. The lack of an abundant annotated dataset limitsthe application of deep learning methods in effectively training models. To tackle this problem, wepropose three transfer learning approaches to analyze the public sentiment on HPV vaccines onTwitter. One was transferring static embeddings and embeddings from language models (ELMo)and then processing by bidirectional gated recurrent unit with attention (BiGRU-Att), called DWEBiGRU-Att. The others were fine-tuning pre-trained models with limited annotated data, called finetuninggenerative pre-training (GPT) and fine-tuning bidirectional encoder representations fromtransformers (BERT). The fine-tuned GPT model was built on the pre-trained generative pretraining(GPT) model. The fine-tuned BERT model was constructed with BERT model. Theexperimental results on the HPV dataset demonstrated the efficacy of the three methods in thesentiment analysis of the HPV vaccination task. The experimental results on the HPV datasetdemonstrated the efficacy of the methods in the sentiment analysis of the HPV vaccination task. Thefine-tuned BERT model outperforms all other methods. It can help to find strategies to improvevaccine uptake.

摘要

社交媒体的广泛使用为公众情绪分析提供了大量数据。基于社交媒体数据,研究人员可以使用基于机器学习的方法来研究社交媒体上公众对人乳头瘤病毒(HPV)疫苗的看法,这将有助于我们理解疫苗接种率低背后的原因。然而,社交媒体数据通常没有标注,且数据标注成本高昂。缺乏丰富的标注数据集限制了深度学习方法在有效训练模型中的应用。为了解决这个问题,我们提出了三种迁移学习方法来分析推特上关于HPV疫苗的公众情绪。一种方法是转移静态嵌入和来自语言模型(ELMo)的嵌入,然后通过带注意力的双向门控循环单元(BiGRU-Att)进行处理,称为DWE-BiGRU-Att。另外两种方法是使用有限的标注数据对预训练模型进行微调,分别称为微调生成式预训练(GPT)和微调来自变换器的双向编码器表征(BERT)。微调后的GPT模型基于预训练的生成式预训练(GPT)模型构建。微调后的BERT模型由BERT模型构建。在HPV数据集上的实验结果证明了这三种方法在HPV疫苗接种任务情绪分析中的有效性。在HPV数据集上的实验结果证明了这些方法在HPV疫苗接种任务情绪分析中的有效性。微调后的BERT模型优于所有其他方法。它有助于找到提高疫苗接种率的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af25/7551482/dff0472d37f3/healthcare-08-00307-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验