Henríquez Pablo A, Alessandri Francisco
Facultad de Administración y Economía, Universidad Diego Portales, Santiago, Chile.
London School of Economics and Political Science, United Kingdom.
Heliyon. 2024 Jun 11;10(12):e32572. doi: 10.1016/j.heliyon.2024.e32572. eCollection 2024 Jun 30.
This study explores the influence of social media content on societal attitudes and actions during critical events, with a special focus on occurrences in Chile, such as the COVID-19 pandemic, the 2019 protests, and the wildfires in 2017 and 2023. By leveraging a novel tweet dataset, this study introduces new metrics for assessing sentiment, inclusivity, engagement, and impact, thereby providing a comprehensive framework for analyzing social media dynamics. The methodology employed enhances sentiment classification through the use of a Deep Random Vector Functional Link (D-RVFL) neural network, which demonstrates superior performance over traditional models such as Support Vector Machines (SVM), naive Bayes, and back propagation (BP) neural networks, achieving an overall average accuracy of 78.30% (0.17). This advancement is attributed to deep learning techniques with direct input-output connections that facilitate faster and more precise sentiment classification. This analysis differentiates the roles of influencers, press radio, and television handlers during crises, revealing how various social media actors affect information dissemination and audience engagement. By dissecting online behaviors and classifying sentiments using the RVFL network, this study sheds light on the effects of the digital landscape on societal attitudes and actions during emergencies. These findings underscore the importance of understanding the nuances of social media engagement to develop more effective crisis communication strategies.
本研究探讨了社交媒体内容在重大事件期间对社会态度和行动的影响,特别关注智利发生的事件,如新冠疫情、2019年抗议活动以及2017年和2023年的野火。通过利用一个新颖的推文数据集,本研究引入了用于评估情绪、包容性、参与度和影响力的新指标,从而为分析社交媒体动态提供了一个全面的框架。所采用的方法通过使用深度随机向量功能链接(D-RVFL)神经网络增强了情绪分类,该网络在支持向量机(SVM)、朴素贝叶斯和反向传播(BP)神经网络等传统模型上表现出卓越的性能,总体平均准确率达到78.30%(0.17)。这一进步归因于具有直接输入输出连接的深度学习技术,有助于更快、更精确地进行情绪分类。该分析区分了有影响力的人、新闻广播和电视从业者在危机期间的角色,揭示了各种社交媒体参与者如何影响信息传播和受众参与度。通过使用RVFL网络剖析在线行为并对情绪进行分类,本研究揭示了数字环境在紧急情况下对社会态度和行动的影响。这些发现强调了理解社交媒体参与细微差别对于制定更有效的危机沟通策略的重要性。