Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States.
Francis I. Proctor Foundation for Research in Ophthalmology, University of California, San Francisco, San Francisco, CA, United States.
J Med Internet Res. 2024 Mar 1;26:e49139. doi: 10.2196/49139.
Previous work suggests that Google searches could be useful in identifying conjunctivitis epidemics. Content-based assessment of social media content may provide additional value in serving as early indicators of conjunctivitis and other systemic infectious diseases.
We investigated whether large language models, specifically GPT-3.5 and GPT-4 (OpenAI), can provide probabilistic assessments of whether social media posts about conjunctivitis could indicate a regional outbreak.
A total of 12,194 conjunctivitis-related tweets were obtained using a targeted Boolean search in multiple languages from India, Guam (United States), Martinique (France), the Philippines, American Samoa (United States), Fiji, Costa Rica, Haiti, and the Bahamas, covering the time frame from January 1, 2012, to March 13, 2023. By providing these tweets via prompts to GPT-3.5 and GPT-4, we obtained probabilistic assessments that were validated by 2 human raters. We then calculated Pearson correlations of these time series with tweet volume and the occurrence of known outbreaks in these 9 locations, with time series bootstrap used to compute CIs.
Probabilistic assessments derived from GPT-3.5 showed correlations of 0.60 (95% CI 0.47-0.70) and 0.53 (95% CI 0.40-0.65) with the 2 human raters, with higher results for GPT-4. The weekly averages of GPT-3.5 probabilities showed substantial correlations with weekly tweet volume for 44% (4/9) of the countries, with correlations ranging from 0.10 (95% CI 0.0-0.29) to 0.53 (95% CI 0.39-0.89), with larger correlations for GPT-4. More modest correlations were found for correlation with known epidemics, with substantial correlation only in American Samoa (0.40, 95% CI 0.16-0.81).
These findings suggest that GPT prompting can efficiently assess the content of social media posts and indicate possible disease outbreaks to a degree of accuracy comparable to that of humans. Furthermore, we found that automated content analysis of tweets is related to tweet volume for conjunctivitis-related posts in some locations and to the occurrence of actual epidemics. Future work may improve the sensitivity and specificity of these methods for disease outbreak detection.
先前的研究表明,谷歌搜索可用于识别结膜炎疫情。基于内容的社交媒体内容评估可能会提供额外的价值,作为结膜炎和其他系统性传染病的早期指标。
我们研究了大型语言模型(特别是 GPT-3.5 和 GPT-4)是否可以对社交媒体上有关结膜炎的帖子是否表明区域性爆发提供概率评估。
使用针对多种语言的目标布尔搜索,从印度、关岛(美国)、马提尼克岛(法国)、菲律宾、美属萨摩亚(美国)、斐济、哥斯达黎加、海地和巴哈马获得了 12194 条与结膜炎相关的推文,时间范围从 2012 年 1 月 1 日至 2023 年 3 月 13 日。通过向 GPT-3.5 和 GPT-4 提供这些推文,我们获得了概率评估,这些评估由 2 名人类评分员进行了验证。然后,我们计算了这些时间序列与这些 9 个地点的推文数量和已知暴发发生之间的皮尔逊相关性,并使用时间序列自举法计算了置信区间。
GPT-3.5 得出的概率评估与 2 名人类评分员的相关性分别为 0.60(95%置信区间 0.47-0.70)和 0.53(95%置信区间 0.40-0.65),GPT-4 的结果更高。GPT-3.5 概率的每周平均值与 44%(9/20)国家的每周推文数量之间存在显著相关性,相关性范围为 0.10(95%置信区间 0.0-0.29)至 0.53(95%置信区间 0.39-0.89),GPT-4 的相关性更大。与已知流行情况的相关性较小,但在美国萨摩亚发现了实质性相关性(0.40,95%置信区间 0.16-0.81)。
这些发现表明,GPT 提示可以有效地评估社交媒体帖子的内容,并在一定程度上准确指示可能的疾病暴发,其准确性可与人类相媲美。此外,我们发现,对结膜炎相关帖子的推文进行自动内容分析与某些地点的推文数量以及实际流行情况有关。未来的工作可能会提高这些疾病暴发检测方法的灵敏度和特异性。