Aix-Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France.
SNC5039 CNRS, 19-21 Boulevard Jean Moulin, 13005 Marseille, France.
Int J Mol Sci. 2020 Aug 29;21(17):6260. doi: 10.3390/ijms21176260.
The probability of the evolution of a character depends on two factors: the probability of moving from one character state to another character state and the probability of the new character state fixation. The more the evolution of a character is probable, the more the convergent evolution will be witnessed, and consequently, convergent evolution could mean that the convergent character evolution results as a combination of these two factors. We investigated this phenomenon by studying the convergent evolution of biochemical functions. For the investigation we used the case of β-lactamases. β-lactamases hydrolyze β-lactams, which are antimicrobials able to block the DD-peptidases involved in bacterial cell wall synthesis. β-lactamase activity is present in two different superfamilies: the metallo-β-lactamase and the serine β-lactamase. The mechanism used to hydrolyze the β-lactam is different for the two superfamilies. We named this kind of evolution an allo-convergent evolution. We further showed that the β-lactamase activity evolved several times within each superfamily, a convergent evolution type that we named iso-convergent evolution. Both types of convergent evolution can be explained by the two evolutionary mechanisms discussed above. The probability of moving from one state to another is explained by the promiscuous β-lactamase activity present in the ancestral sequences of each superfamily, while the probability of fixation is explained in part by positive selection, as the organisms having β-lactamase activity allows them to resist organisms that secrete β-lactams. Indeed, an organism that has a mutation that increases the β-lactamase activity will be selected, as the organisms having this activity will have an advantage over the others.
从一个特征状态向另一个特征状态转变的概率和新特征状态固定的概率。一个特征的进化越有可能,就越能见证趋同进化,因此,趋同进化可能意味着趋同特征进化是这两个因素的结合。我们通过研究生化功能的趋同进化来研究这种现象。为此,我们使用β-内酰胺酶的案例。β-内酰胺酶水解β-内酰胺,β-内酰胺是能够阻止参与细菌细胞壁合成的 DD-肽酶的抗生素。β-内酰胺酶活性存在于两个不同的超家族中:金属β-内酰胺酶和丝氨酸β-内酰胺酶。两种超家族用于水解β-内酰胺的机制不同。我们将这种进化命名为异体趋同进化。我们进一步表明,β-内酰胺酶活性在每个超家族内进化了多次,这是一种我们称之为同趋同进化的趋同进化类型。两种类型的趋同进化都可以用上面讨论的两种进化机制来解释。从一种状态向另一种状态转变的概率是由每个超家族的祖先序列中存在的混杂β-内酰胺酶活性解释的,而固定的概率部分是由正选择解释的,因为具有β-内酰胺酶活性的生物体可以抵抗分泌β-内酰胺的生物体。事实上,具有增加β-内酰胺酶活性的突变的生物体将被选择,因为具有这种活性的生物体将比其他生物体具有优势。