Giannone Giulia, Della Sala Fabio
Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy.
J Chem Phys. 2020 Aug 28;153(8):084110. doi: 10.1063/5.0020545.
The modeling of optical spectra of plasmonic nanoparticles via first-principles approaches is computationally expensive; thus, methods with high accuracy/computational cost ratio are required. Here, we show that the Time-Dependent Density Functional Theory (TDDFT) approach can be strongly simplified if only one s-type function per atom is employed in the auxiliary basis set, with a properly optimized exponent. This approach (named TDDFT-as, for auxiliary s-type) predicts excitation energies for silver nanoparticles with different sizes and shapes with an average error of only 12 meV compared to reference TDDFT calculations. The TDDFT-as approach resembles tight-binding approximation schemes for the linear-response treatment, but for the atomic transition charges, which are here computed exactly (i.e., without approximation from population analysis). We found that the exact computation of the atomic transition charges strongly improves the absorption spectra in a wide energy range.
通过第一性原理方法对等离激元纳米粒子的光谱进行建模计算成本很高;因此,需要具有高精度/计算成本比的方法。在这里,我们表明,如果在辅助基组中每个原子仅采用一个s型函数,并进行适当优化的指数,那么含时密度泛函理论(TDDFT)方法可以得到极大简化。这种方法(称为TDDFT-as,即辅助s型)预测不同尺寸和形状的银纳米粒子的激发能,与参考TDDFT计算相比,平均误差仅为12毫电子伏特。TDDFT-as方法类似于用于线性响应处理的紧束缚近似方案,但对于原子跃迁电荷,这里是精确计算的(即,无需通过布居分析进行近似)。我们发现,原子跃迁电荷的精确计算在很宽的能量范围内显著改善了吸收光谱。