Suppr超能文献

心脏手术后项目恢复方案:一项利用数字平台描述患者术后纵向恢复模式的单中心队列研究。

Protocol for project recovery after cardiac surgery: a single-center cohort study leveraging digital platform to characterise longitudinal patient-reported postoperative recovery patterns.

作者信息

Mori Makoto, Brooks Cornell, Spatz Erica, Mortazavi Bobak J, Dhruva Sanket S, Linderman George C, Grab Lawrence A, Zhang Yawei, Geirsson Arnar, Chaudhry Sarwat I, Krumholz Harlan M

机构信息

Division of Cardiac Surgery, Yale School of Medicine, New Haven, Connecticut, USA.

Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, Connecticut, USA.

出版信息

BMJ Open. 2020 Sep 1;10(9):e036959. doi: 10.1136/bmjopen-2020-036959.

Abstract

INTRODUCTION

Improving postoperative patient recovery after cardiac surgery is a priority, but our current understanding of individual variations in recovery and factors associated with poor recovery is limited. We are using a health-information exchange platform to collect patient-reported outcome measures (PROMs) and wearable device data to phenotype recovery patterns in the 30-day period after cardiac surgery hospital discharge, to identify factors associated with these phenotypes and to investigate phenotype associations with clinical outcomes.

METHODS AND ANALYSIS

We designed a prospective cohort study to enrol 200 patients undergoing valve, coronary artery bypass graft or aortic surgery at a tertiary centre in the USA. We are enrolling patients postoperatively after the intensive care unit discharge and delivering electronic surveys directly to patients every 3 days for 30 days after hospital discharge. We will conduct medical record reviews to collect patient demographics, comorbidity, operative details and hospital course using the Society of Thoracic Surgeons data definitions. We will use phone interview and medical record review data for adjudication of survival, readmission and complications. We will apply group-based trajectory modelling to the time-series PROM and device data to classify patients into distinct categories of recovery trajectories. We will evaluate whether certain recovery pattern predicts death or hospital readmissions, as well as whether clinical factors predict a patient having poor recovery trajectories. We will evaluate whether early recovery patterns predict the overall trajectory at the patient-level.

ETHICS AND DISSEMINATION

The Yale Institutional Review Board approved this study. Following the description of the study procedure, we obtain written informed consent from all study participants. The consent form states that all personal information, survey response and any medical records are confidential, will not be shared and are stored in an encrypted database. We plan to publish our study findings in peer-reviewed journals.

摘要

引言

改善心脏手术后患者的恢复情况是当务之急,但我们目前对恢复过程中的个体差异以及与恢复不佳相关因素的了解有限。我们正在使用一个健康信息交换平台来收集患者报告的结局指标(PROMs)和可穿戴设备数据,以对心脏手术出院后30天内的恢复模式进行表型分析,识别与这些表型相关的因素,并研究表型与临床结局之间的关联。

方法与分析

我们设计了一项前瞻性队列研究,在美国一家三级中心招募200例接受瓣膜、冠状动脉搭桥或主动脉手术的患者。我们在患者重症监护病房出院后进行入组,并在出院后30天内每3天直接向患者发送电子调查问卷。我们将进行病历审查,使用胸外科医师协会的数据定义收集患者的人口统计学信息、合并症、手术细节和住院过程。我们将使用电话访谈和病历审查数据来判定生存情况、再入院情况和并发症情况。我们将对时间序列的PROM和设备数据应用基于组的轨迹建模,将患者分类为不同的恢复轨迹类别。我们将评估某些恢复模式是否能预测死亡或住院再入院情况,以及临床因素是否能预测患者的恢复轨迹不佳。我们将评估早期恢复模式是否能在患者层面预测总体轨迹。

伦理与传播

耶鲁机构审查委员会批准了本研究。在描述研究程序后,我们获得了所有研究参与者的书面知情同意。同意书声明所有个人信息、调查回复和任何病历都是保密的,不会被共享,并存储在加密数据库中。我们计划在同行评审期刊上发表我们的研究结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc28/7467526/7d6dd62ce760/bmjopen-2020-036959f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验