Suppr超能文献

细胞壁真菌型半乳甘露聚糖核心甘露聚糖生物合成的结构基础。

Structural basis for the core-mannan biosynthesis of cell wall fungal-type galactomannan in .

机构信息

Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Kumamoto, Japan.

Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Kumamoto, Japan.

出版信息

J Biol Chem. 2020 Nov 6;295(45):15407-15417. doi: 10.1074/jbc.RA120.013742. Epub 2020 Sep 1.

Abstract

Fungal cell walls and their biosynthetic enzymes are potential targets for novel antifungal agents. Recently, two mannosyltransferases, namely core-mannan synthases A (CmsA/Ktr4) and B (CmsB/Ktr7), were found to play roles in the core-mannan biosynthesis of fungal-type galactomannan. CmsA/Ktr4 is an α-(1→2)-mannosyltransferase responsible for α-(1→2)-mannan biosynthesis in fungal-type galactomannan, which covers the cell surface of Strains with disrupted / have been shown to exhibit strongly suppressed hyphal elongation and conidiation alongside reduced virulence in a mouse model of invasive aspergillosis, indicating that CmsA/Ktr4 is a potential novel antifungal candidate. In this study we present the 3D structures of the soluble catalytic domain of CmsA/Ktr4, as determined by X-ray crystallography at a resolution of 1.95 Å, as well as the enzyme and Mn/GDP complex to 1.90 Å resolution. The CmsA/Ktr4 protein not only contains a highly conserved binding pocket for the donor substrate, GDP-mannose, but also has a unique broad cleft structure formed by its N- and C-terminal regions and is expected to recognize the acceptor substrate, a mannan chain. Based on these crystal structures, we also present a 3D structural model of the enzyme-substrate complex generated using docking and molecular dynamics simulations with α-Man-(1→6)-α-Man-(1→2)-α-Man-OMe as the model structure for the acceptor substrate. This predicted enzyme-substrate complex structure is also supported by findings from single amino acid substitution CmsA/Ktr4 mutants expressed in Δ cells. Taken together, these results provide basic information for developing specific α-mannan biosynthesis inhibitors for use as pharmaceuticals and/or pesticides.

摘要

真菌细胞壁及其生物合成酶是新型抗真菌药物的潜在靶标。最近,两种甘露糖基转移酶,即核心甘露聚糖合成酶 A(CmsA/Ktr4)和 B(CmsB/Ktr7),被发现参与真菌型半乳甘露聚糖的核心甘露聚糖生物合成。CmsA/Ktr4 是一种 α-(1→2)-甘露糖基转移酶,负责真菌型半乳甘露聚糖中 α-(1→2)-甘露聚糖的生物合成,该甘露聚糖覆盖细胞表面。具有缺失/已被证明表现出强烈抑制菌丝伸长和分生孢子形成,以及在侵袭性曲霉病的小鼠模型中降低毒力的菌株,表明 CmsA/Ktr4 是一种潜在的新型抗真菌候选物。在这项研究中,我们通过 X 射线晶体学以 1.95Å 的分辨率确定了可溶性催化结构域的 3D 结构,以及酶和 Mn/GDP 复合物的分辨率为 1.90Å。CmsA/Ktr4 蛋白不仅包含一个高度保守的结合口袋,用于供体底物 GDP-甘露糖,而且还具有一个独特的由其 N 和 C 末端区域形成的宽阔裂缝结构,预计能够识别受体底物,甘露聚糖链。基于这些晶体结构,我们还使用对接和分子动力学模拟生成了酶-底物复合物的 3D 结构模型,其中 α-Man-(1→6)-α-Man-(1→2)-α-Man-OMe 作为受体底物的模型结构。该预测的酶-底物复合物结构也得到了在Δ细胞中表达的单个氨基酸取代 CmsA/Ktr4 突变体的发现的支持。总之,这些结果为开发用于药物和/或农药的特定α-甘露聚糖生物合成抑制剂提供了基础信息。

相似文献

本文引用的文献

4
Benchmarking fold detection by DaliLite v.5.用 DaliLite v.5 进行折叠检测的基准测试。
Bioinformatics. 2019 Dec 15;35(24):5326-5327. doi: 10.1093/bioinformatics/btz536.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验