Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
J Biol Chem. 2020 Nov 13;295(46):15527-15539. doi: 10.1074/jbc.RA120.015277. Epub 2020 Sep 1.
Recent proteomics studies of vertebrate striated muscle have identified lysine acetylation at several sites on actin. Acetylation is a reversible post-translational modification that neutralizes lysine's positive charge. Positively charged residues on actin, particularly Lys and Lys, are predicted to form critical electrostatic interactions with tropomyosin (Tpm) that promote its binding to filamentous (F)-actin and bias Tpm to an azimuthal location where it impedes myosin attachment. The troponin (Tn) complex also influences Tpm's position along F-actin as a function of Ca to regulate exposure of myosin-binding sites and, thus, myosin cross-bridge recruitment and force production. Interestingly, Lys and Lys are among the documented acetylated residues. Using an acetic anhydride-based labeling approach, we showed that excessive, nonspecific actin acetylation did not disrupt characteristic F-actin-Tpm binding. However, it significantly reduced Tpm-mediated inhibition of myosin attachment, as reflected by increased F-actin-Tpm motility that persisted in the presence of Tn and submaximal Ca Furthermore, decreasing the extent of chemical acetylation, to presumptively target highly reactive Lys and Lys, also resulted in less inhibited F-actin-Tpm, implying that modifying only these residues influences Tpm's location and, potentially, thin filament regulation. To unequivocally determine the residue-specific consequences of acetylation on Tn-Tpm-based regulation of actomyosin activity, we assessed the effects of K326Q and K328Q acetyl (Ac)-mimetic actin on Ca-dependent, motility parameters of reconstituted thin filaments (RTFs). Incorporation of K328Q actin significantly enhanced Ca sensitivity of RTF activation relative to control. Together, our findings suggest that actin acetylation, especially Lys, modulates muscle contraction via disrupting inhibitory Tpm positioning.
最近的脊椎动物横纹肌蛋白质组学研究鉴定了肌动蛋白上几个位点的赖氨酸乙酰化。乙酰化是一种可逆的翻译后修饰,可中和赖氨酸的正电荷。肌动蛋白上带正电荷的残基,特别是赖氨酸和精氨酸,预计与原肌球蛋白(Tpm)形成关键的静电相互作用,促进其与丝状(F)-肌动蛋白结合,并使 Tpm 偏向于一个方位,从而阻碍肌球蛋白的附着。肌钙蛋白(Tn)复合物也会影响 Tpm 在 F-肌动蛋白上的位置,作为 Ca 的函数,调节肌球蛋白结合位点的暴露,从而调节肌球蛋白交联桥的募集和力的产生。有趣的是,赖氨酸和精氨酸是被记录的乙酰化残基之一。使用基于醋酸酐的标记方法,我们表明过度的、非特异性的肌动蛋白乙酰化不会破坏 F-肌动蛋白-Tpm 的特征结合。然而,它显著降低了 Tpm 介导的肌球蛋白附着抑制作用,反映在 F-肌动蛋白-Tpm 运动性增加,这种增加在 Tn 和亚最大 Ca 的存在下仍然存在。此外,降低化学乙酰化的程度,以推测针对高度反应性的赖氨酸和精氨酸,也导致 F-肌动蛋白-Tpm 抑制减少,这意味着仅修饰这些残基会影响 Tpm 的位置,并可能影响细肌丝的调节。为了明确确定 Tn-Tpm 基于肌球蛋白活性的调节中乙酰化对特定残基的影响,我们评估了 K326Q 和 K328Q 乙酰(Ac)模拟肌动蛋白对再构成的薄肌丝(RTFs)的 Ca 依赖性、运动参数的影响。K328Q 肌动蛋白的掺入显著增强了 RTF 激活的 Ca 敏感性,与对照相比。总的来说,我们的研究结果表明,肌动蛋白乙酰化,特别是赖氨酸,通过破坏抑制性 Tpm 定位来调节肌肉收缩。