Suppr超能文献

用于恢复胶体量子点光伏电池电荷收集效率的混合表面钝化

Hybrid Surface Passivation for Retrieving Charge Collection Efficiency of Colloidal Quantum Dot Photovoltaics.

作者信息

Yang Jonghee, Oh Jae Taek, Kim Minseon, Song Hochan, Boukhvalov Danil W, Lee Seung Hyun, Choi Hyosung, Yi Whikun

机构信息

Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea.

Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2020 Sep 30;12(39):43576-43585. doi: 10.1021/acsami.0c10077. Epub 2020 Sep 16.

Abstract

Efficient charge collection in photovoltaics is a key issue toward their high performance. Despite the promising performance of colloidal quantum dot (CQD)-based photovoltaics (CQDPVs), they suffer significant dissipation of photocurrent due to imperfect surface passivation of the CQD hole transport layer (HTL) by a single 1,2-ethaneditihol (EDT) ligand. To address the critical drawback of existing CQDPVs, we offer a hybrid passivation strategy, including both EDT and thiocyanate (SCN). The hybrid passivation leads to seamless surface passivation of CQDs, remarkably suppressing charge recombination. This strategy also augments the p-doping density of the CQD, resulting in a pronounced energy level bending at the active layer/HTL interface and facilitating efficient charge separation. Moreover, enhanced electronic coupling across the CQDs (originating from reduced inter-dot spacing) promotes rapid charge extraction. Consequently, the flawless charge collection by a hybrid-passivated HTL successfully retrieves the photocurrent, achieving an enhanced CQDPV power conversion efficiency of 12.70% compared with 11.49% for the control device.

摘要

在光伏领域中,高效的电荷收集是实现其高性能的关键问题。尽管基于胶体量子点(CQD)的光伏器件(CQDPV)展现出了令人期待的性能,但由于单个1,2 - 乙二硫醇(EDT)配体对CQD空穴传输层(HTL)的表面钝化不完善,导致光电流存在显著损耗。为了解决现有CQDPV的这一关键缺陷,我们提出了一种包括EDT和硫氰酸盐(SCN)的混合钝化策略。这种混合钝化实现了CQD表面的无缝钝化,显著抑制了电荷复合。该策略还提高了CQD的p型掺杂密度,导致有源层/HTL界面处出现明显的能级弯曲,促进了高效的电荷分离。此外,CQD之间增强的电子耦合(源于点间距减小)促进了快速电荷提取。因此,通过混合钝化的HTL实现的完美电荷收集成功恢复了光电流,与对照器件的11.49%相比,CQDPV的功率转换效率提高到了12.70%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验