Suppr超能文献

用于高效胶体量子点太阳能电池的化学正交空穴传输层。

A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells.

作者信息

Biondi Margherita, Choi Min-Jae, Ouellette Olivier, Baek Se-Woong, Todorović Petar, Sun Bin, Lee Seungjin, Wei Mingyang, Li Peicheng, Kirmani Ahmad R, Sagar Laxmi K, Richter Lee J, Hoogland Sjoerd, Lu Zheng-Hong, García de Arquer F Pelayo, Sargent Edward H

机构信息

Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.

Department of Material Science and Engineering, University of Toronto, 184 College St, Toronto, Ontario, M5S 3E4, Canada.

出版信息

Adv Mater. 2020 Apr;32(17):e1906199. doi: 10.1002/adma.201906199. Epub 2020 Mar 20.

Abstract

Colloidal quantum dots (CQDs) are of interest in light of their solution-processing and bandgap tuning. Advances in the performance of CQD optoelectronic devices require fine control over the properties of each layer in the device materials stack. This is particularly challenging in the present best CQD solar cells, since these employ a p-type hole-transport layer (HTL) implemented using 1,2-ethanedithiol (EDT) ligand exchange on top of the CQD active layer. It is established that the high reactivity of EDT causes a severe chemical modification to the active layer that deteriorates charge extraction. By combining elemental mapping with the spatial charge collection efficiency in CQD solar cells, the key materials interface dominating the subpar performance of prior CQD PV devices is demonstrated. This motivates to develop a chemically orthogonal HTL that consists of malonic-acid-crosslinked CQDs. The new crosslinking strategy preserves the surface chemistry of the active layer beneath, and at the same time provides the needed efficient charge extraction. The new HTL enables a 1.4× increase in charge carrier diffusion length in the active layer; and as a result leads to an improvement in power conversion efficiency to 13.0% compared to EDT standard cells (12.2%).

摘要

胶体量子点(CQDs)因其可溶液处理和能带隙可调而备受关注。提高CQD光电器件的性能需要对器件材料堆栈中每一层的特性进行精细控制。在目前最佳的CQD太阳能电池中,这尤其具有挑战性,因为这些电池在CQD活性层之上采用了通过1,2 - 乙二硫醇(EDT)配体交换实现的p型空穴传输层(HTL)。已经确定,EDT的高反应性会对活性层造成严重的化学改性,从而降低电荷提取效率。通过将元素映射与CQD太阳能电池中的空间电荷收集效率相结合,证明了主导先前CQD光伏器件性能不佳的关键材料界面。这促使人们开发一种由丙二酸交联的CQDs组成的化学正交HTL。新的交联策略保留了下方活性层的表面化学性质,同时提供了所需的高效电荷提取。新的HTL使活性层中的电荷载流子扩散长度增加了1.4倍;结果,与EDT标准电池(12.2%)相比,功率转换效率提高到了13.0%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验