ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels (Barcelona), Spain.
ICREA-Institució Catalana de Recerca i Estudis Avançats , Passeig Lluís Companys 23, 08010 Barcelona, Spain.
ACS Appl Mater Interfaces. 2017 Aug 23;9(33):27390-27395. doi: 10.1021/acsami.7b08568. Epub 2017 Aug 11.
The performance of ZnO/PbS colloidal quantum dot (CQD)-based heterojunction solar cells is hindered by charge carrier recombination at the heterojunction interface. Reducing interfacial recombination can improve charge collection and the photocurrent of the device. Here we report the use of a mixed nanocrystal (MNC) buffer layer comprising zinc oxide nanocrystals and lead sulfide quantum dots at the respective heterojunction interface. Remote trap passivation of the PbS CQDs taking place within this MNC layer reduces interfacial recombination and electron back transfer which in turn improves charge collection efficiency. Upon the addition of the MNC layer, the overall power conversion efficiency increases from 9.11 to 10.16% and Short-circuit current density (J) increases from 23.54 to 25.23 mA/cm. Optoelectronic characterization of the solar cells confirms that the effects underlying device improvement are reduced trap density and improved charge collection efficiency due to the presence of the MNC buffer layer.
基于 ZnO/PbS 胶体量子点 (CQD) 的异质结太阳能电池的性能受到异质结界面处电荷载流子复合的限制。减少界面复合可以提高器件的电荷收集和光电流。在这里,我们报告了在相应的异质结界面处使用包含氧化锌纳米晶体和硫化铅量子点的混合纳米晶体 (MNC) 缓冲层。在这个 MNC 层内发生的 PbS CQD 的远程陷阱钝化减少了界面复合和电子反向转移,从而提高了电荷收集效率。在添加 MNC 层后,整体功率转换效率从 9.11%提高到 10.16%,短路电流密度 (J) 从 23.54 mA/cm 提高到 25.23 mA/cm。太阳能电池的光电特性证实,由于存在 MNC 缓冲层,器件性能提高的原因是陷阱密度降低和电荷收集效率提高。