Suppr超能文献

棘白菌素诱导的白念珠菌细胞壁损伤反应的转录调控。

Transcriptional regulation of the caspofungin-induced cell wall damage response in Candida albicans.

机构信息

Department of Sciences, John Jay College of the City University of New York, New York, NY, USA.

Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA.

出版信息

Curr Genet. 2020 Dec;66(6):1059-1068. doi: 10.1007/s00294-020-01105-8. Epub 2020 Sep 2.

Abstract

The human fungal pathogen Candida albicans maintains pathogenic and commensal states primarily through cell wall functions. The echinocandin antifungal drug caspofungin inhibits cell wall synthesis and is widely used in treating disseminated candidiasis. Signaling pathways are critical in coordinating the adaptive response to cell wall damage (CWD). C. albicans executes a robust transcriptional program following caspofungin-induced CWD. A comprehensive analysis of signaling pathways at the transcriptional level facilitates the identification of prospective genes for functional characterization and propels the development of novel antifungal interventions. This review article focuses on the molecular functions and signaling crosstalk of the C. albicans transcription factors Sko1, Rlm1, and Cas5 in caspofungin-induced CWD signaling.

摘要

人源真菌病原体白色念珠菌主要通过细胞壁功能维持其致病性和共生状态。棘白菌素类抗真菌药物卡泊芬净可抑制细胞壁合成,被广泛用于治疗播散性念珠菌病。信号通路在协调对细胞壁损伤(CWD)的适应性反应中至关重要。在卡泊芬净诱导的 CWD 后,白色念珠菌会执行一个强大的转录程序。在转录水平上对信号通路进行全面分析有助于确定功能特征的潜在基因,并推动新型抗真菌干预措施的发展。本文综述了白色念珠菌转录因子 Sko1、Rlm1 和 Cas5 在卡泊芬净诱导的 CWD 信号中的分子功能和信号串扰。

相似文献

1
Transcriptional regulation of the caspofungin-induced cell wall damage response in Candida albicans.
Curr Genet. 2020 Dec;66(6):1059-1068. doi: 10.1007/s00294-020-01105-8. Epub 2020 Sep 2.
2
An expanded cell wall damage signaling network is comprised of the transcription factors Rlm1 and Sko1 in Candida albicans.
PLoS Genet. 2020 Jul 8;16(7):e1008908. doi: 10.1371/journal.pgen.1008908. eCollection 2020 Jul.
3
Regulation of the Candida albicans cell wall damage response by transcription factor Sko1 and PAS kinase Psk1.
Mol Biol Cell. 2008 Jul;19(7):2741-51. doi: 10.1091/mbc.e08-02-0191. Epub 2008 Apr 23.
4
The Monoterpene Carvacrol Generates Endoplasmic Reticulum Stress in the Pathogenic Fungus Candida albicans.
Antimicrob Agents Chemother. 2015 Aug;59(8):4584-92. doi: 10.1128/AAC.00551-15. Epub 2015 May 26.
7
Efg1 and Cas5 Orchestrate Cell Wall Damage Response to Caspofungin in Candida albicans.
Antimicrob Agents Chemother. 2021 Jan 20;65(2). doi: 10.1128/AAC.01584-20.
8
Control of the C. albicans cell wall damage response by transcriptional regulator Cas5.
PLoS Pathog. 2006 Mar;2(3):e21. doi: 10.1371/journal.ppat.0020021. Epub 2006 Mar 17.
10
Identification of New Antifungal Agents Targeting Chitin Synthesis by a Chemical-Genetic Method.
Molecules. 2019 Aug 29;24(17):3155. doi: 10.3390/molecules24173155.

引用本文的文献

4
Strains Adapted to Caspofungin Due to Aneuploidy Become Highly Tolerant under Continued Drug Pressure.
Microorganisms. 2022 Dec 21;11(1):23. doi: 10.3390/microorganisms11010023.
6
The Role of Sfp1 in Cell Wall Maintenance.
J Fungi (Basel). 2022 Nov 13;8(11):1196. doi: 10.3390/jof8111196.
7
Multiple Genes of Candida albicans Influencing Echinocandin Susceptibility in Caspofungin-Adapted Mutants.
Antimicrob Agents Chemother. 2022 Dec 20;66(12):e0097722. doi: 10.1128/aac.00977-22. Epub 2022 Nov 10.
8
Transcriptomics and Phenotyping Define Genetic Signatures Associated with Echinocandin Resistance in Candida auris.
mBio. 2022 Aug 30;13(4):e0079922. doi: 10.1128/mbio.00799-22. Epub 2022 Aug 15.
9
Caspofungin resistance in Candida albicans: genetic factors and synergistic compounds for combination therapies.
Braz J Microbiol. 2022 Sep;53(3):1101-1113. doi: 10.1007/s42770-022-00739-9. Epub 2022 Mar 29.

本文引用的文献

1
An expanded cell wall damage signaling network is comprised of the transcription factors Rlm1 and Sko1 in Candida albicans.
PLoS Genet. 2020 Jul 8;16(7):e1008908. doi: 10.1371/journal.pgen.1008908. eCollection 2020 Jul.
2
Functional divergence of a global regulatory complex governing fungal filamentation.
PLoS Genet. 2019 Jan 7;15(1):e1007901. doi: 10.1371/journal.pgen.1007901. eCollection 2019 Jan.
3
Epidemiology, clinical characteristics, resistance, and treatment of infections by .
J Intensive Care. 2018 Oct 29;6:69. doi: 10.1186/s40560-018-0342-4. eCollection 2018.
4
The Role of Transcription Factor in Response to Carbon Adaptation.
Front Microbiol. 2018 May 29;9:1127. doi: 10.3389/fmicb.2018.01127. eCollection 2018.
5
Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control - An update.
Microb Pathog. 2018 Apr;117:128-138. doi: 10.1016/j.micpath.2018.02.028. Epub 2018 Feb 16.
7
The Fungal Cell Wall: Structure, Biosynthesis, and Function.
Microbiol Spectr. 2017 May;5(3). doi: 10.1128/microbiolspec.FUNK-0035-2016.
8
Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation.
PLoS Pathog. 2017 Jan 30;13(1):e1006131. doi: 10.1371/journal.ppat.1006131. eCollection 2017 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验