Suppr超能文献

密集残差拉普拉斯超分辨率

Densely Residual Laplacian Super-Resolution.

作者信息

Anwar Saeed, Barnes Nick

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Mar;44(3):1192-1204. doi: 10.1109/TPAMI.2020.3021088. Epub 2022 Feb 3.

Abstract

Super-Resolution convolutional neural networks have recently demonstrated high-quality restoration for single images. However, existing algorithms often require very deep architectures and long training times. Furthermore, current convolutional neural networks for super-resolution are unable to exploit features at multiple scales and weigh them equally or at only static scale only, limiting their learning capability. In this exposition, we present a compact and accurate super-resolution algorithm, namely, densely residual laplacian network (DRLN). The proposed network employs cascading residual on the residual structure to allow the flow of low-frequency information to focus on learning high and mid-level features. In addition, deep supervision is achieved via the densely concatenated residual blocks settings, which also helps in learning from high-level complex features. Moreover, we propose Laplacian attention to model the crucial features to learn the inter and intra-level dependencies between the feature maps. Furthermore, comprehensive quantitative and qualitative evaluations on low-resolution, noisy low-resolution, and real historical image benchmark datasets illustrate that our DRLN algorithm performs favorably against the state-of-the-art methods visually and accurately.

摘要

超分辨率卷积神经网络最近在单图像的高质量恢复方面取得了显著成果。然而,现有的算法通常需要非常深的架构和较长的训练时间。此外,当前用于超分辨率的卷积神经网络无法利用多尺度特征,且对这些特征的加权方式要么是平均分配,要么仅在静态尺度上进行,这限制了它们的学习能力。在本论述中,我们提出了一种紧凑且精确的超分辨率算法,即密集残差拉普拉斯网络(DRLN)。所提出的网络在残差结构上采用级联残差,以使低频信息流能够专注于学习高、中级特征。此外,通过密集连接的残差块设置实现深度监督,这也有助于从高级复杂特征中学习。而且,我们提出拉普拉斯注意力来对关键特征进行建模,以学习特征图之间的层间和层内依赖性。此外,在低分辨率、有噪声的低分辨率和真实历史图像基准数据集上进行的全面定量和定性评估表明,我们的DRLN算法在视觉和准确性方面均优于当前的先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验