Suppr超能文献

基于多模态传感器融合的改进型热红外图像超分辨率重建方法

Improved Thermal Infrared Image Super-Resolution Reconstruction Method Base on Multimodal Sensor Fusion.

作者信息

Jiang Yichun, Liu Yunqing, Zhan Weida, Zhu Depeng

机构信息

The College of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China.

National Demonstration Center for Experimental Electrical, Changchun University of Science and Technology, Changchun 130022, China.

出版信息

Entropy (Basel). 2023 Jun 9;25(6):914. doi: 10.3390/e25060914.

Abstract

When traditional super-resolution reconstruction methods are applied to infrared thermal images, they often ignore the problem of poor image quality caused by the imaging mechanism, which makes it difficult to obtain high-quality reconstruction results even with the training of simulated degraded inverse processes. To address these issues, we proposed a thermal infrared image super-resolution reconstruction method based on multimodal sensor fusion, aiming to enhance the resolution of thermal infrared images and rely on multimodal sensor information to reconstruct high-frequency details in the images, thereby overcoming the limitations of imaging mechanisms. First, we designed a novel super-resolution reconstruction network, which consisted of primary feature encoding, super-resolution reconstruction, and high-frequency detail fusion subnetwork, to enhance the resolution of thermal infrared images and rely on multimodal sensor information to reconstruct high-frequency details in the images, thereby overcoming limitations of imaging mechanisms. We designed hierarchical dilated distillation modules and a cross-attention transformation module to extract and transmit image features, enhancing the network's ability to express complex patterns. Then, we proposed a hybrid loss function to guide the network in extracting salient features from thermal infrared images and reference images while maintaining accurate thermal information. Finally, we proposed a learning strategy to ensure the high-quality super-resolution reconstruction performance of the network, even in the absence of reference images. Extensive experimental results show that the proposed method exhibits superior reconstruction image quality compared to other contrastive methods, demonstrating its effectiveness.

摘要

当将传统的超分辨率重建方法应用于红外热图像时,它们常常忽略成像机制导致的图像质量差的问题,这使得即使通过模拟退化逆过程的训练也难以获得高质量的重建结果。为了解决这些问题,我们提出了一种基于多模态传感器融合的热红外图像超分辨率重建方法,旨在提高热红外图像的分辨率,并依靠多模态传感器信息重建图像中的高频细节,从而克服成像机制的局限性。首先,我们设计了一种新颖的超分辨率重建网络,它由主特征编码、超分辨率重建和高频细节融合子网络组成,以提高热红外图像的分辨率,并依靠多模态传感器信息重建图像中的高频细节,从而克服成像机制的局限性。我们设计了分层扩张蒸馏模块和交叉注意力变换模块来提取和传输图像特征,增强网络表达复杂模式的能力。然后,我们提出了一种混合损失函数,以指导网络在保持准确热信息的同时从热红外图像和参考图像中提取显著特征。最后,我们提出了一种学习策略,以确保网络即使在没有参考图像的情况下也能具有高质量的超分辨率重建性能。大量实验结果表明,与其他对比方法相比,所提出的方法具有更高的重建图像质量,证明了其有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f258/10297407/44c8be437820/entropy-25-00914-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验