Suppr超能文献

研究空间电荷效应和离子捕获能力对代谢组学直接进样超高分辨率质谱工作流程的影响。

Investigation of space charge effects and ion trapping capacity on direct introduction ultra-high-resolution mass spectrometry workflows for metabolomics.

机构信息

Sorbonne Université, Faculté des Sciences et Ingénierie, IPCM, UMR 8232, 4 Place Jussieu, Paris Cedex 05, 75252, France.

Service de Pharmacologie et d'Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, Gif-sur-Yvette, 91191, France.

出版信息

J Mass Spectrom. 2020 Oct;55(10):e4613. doi: 10.1002/jms.4613.

Abstract

Ultra-high-resolution mass spectrometry, in the absence of chromatography, is finding its place for direct analyses of highly complex mixtures, such as those encountered during untargeted metabolomics screening. Advances, however, have been tempered by difficulties such as uneven signal suppression experienced during electrospray ionization. Moreover, ultra-high-resolution mass spectrometers that use Orbitrap and ICR analyzers both suffer from limited ion trapping capacities, owing principally to space-charge effects. This study has evaluated and contrasted the above two types of Fourier transform mass spectrometers for their abilities to detect and identify by accurate mass measurement, small molecule metabolites present in complex mixtures. For these direct introduction studies, the Orbitrap Fusion showed a major advantage in terms of speed of analysis, enabling detection of 218 of 440 molecules (<2 ppm error, 500 000 resolution at m/z 200) present in a complex mixture in 5 min. This approach is the most viable for high-throughput workflows, such as those used in investigations involving very large cohorts of metabolomics samples. From the same mixture, 183 unique molecules were observed by FT-ICR in the broadband mode, but this number was raised to 235 when "selected ion monitoring-stitching" (SIM-stitching) was employed (<0.1 ppm error, 7 T magnet with dynamic harmonization cell, 1.8 million resolution at m/z 200, both cases). SIM-stitching FT-ICR thus offered the most complete detection, which may be of paramount importance in situations where it is essential to obtain the most complete metabolic profile possible. This added completeness, however, came at the cost of a more lengthy analysis time (120 min including manual treatment). Compared to the data presented here, future automation of processing, plus the use of absorption mode detection, segmented ion detection (stepwise detection of smaller width m/z sections), and higher magnetic field strengths, can substantially reduce FT-ICR acquisition times.

摘要

超分辨率质谱在没有色谱的情况下,正在为直接分析高度复杂的混合物找到一席之地,例如在非靶向代谢组学筛选中遇到的混合物。然而,这些进展受到了一些困难的限制,例如在电喷雾电离过程中不均匀的信号抑制。此外,使用轨道阱和 ICR 分析仪的超分辨率质谱仪都受到离子捕获能力有限的限制,主要是由于空间电荷效应。本研究评估并对比了这两种类型的傅里叶变换质谱仪,以评估它们通过精确质量测量检测和识别复杂混合物中小分子代谢物的能力。对于这些直接引入的研究,Orbitrap Fusion 在分析速度方面具有明显优势,能够在 5 分钟内检测到复杂混合物中存在的 440 种分子中的 218 种(<2 ppm 误差,200 m/z 时分辨率为 500 000)。这种方法最适合高通量工作流程,例如在涉及非常大的代谢组学样本队列的研究中使用的方法。从同一混合物中,在宽带模式下观察到 FT-ICR 中有 183 个独特的分子,但当采用“选择离子监测拼接”(SIM-stitching)时,这个数字增加到 235 个(<0.1 ppm 误差,7 T 磁铁,带有动态调谐单元的细胞,200 m/z 时分辨率为 1.8 百万,两种情况)。因此,SIM-stitching FT-ICR 提供了最完整的检测,这在必须获得尽可能完整的代谢谱的情况下可能至关重要。然而,这种附加的完整性是以更长的分析时间为代价的(包括手动处理在内为 120 分钟)。与这里呈现的数据相比,未来的处理自动化,以及吸收模式检测、分段离子检测(更小宽度 m/z 部分的逐步检测)和更高的磁场强度,可以大大缩短 FT-ICR 的采集时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验