Habchi Baninia, Alves Sandra, Jouan-Rimbaud Bouveresse Delphine, Appenzeller Brice, Paris Alain, Rutledge Douglas N, Rathahao-Paris Estelle
UMR Ingénierie Procédés Aliments, AgroParisTech, Inra, Université Paris-Saclay, 91300, Massy, France.
Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 place Jussieu, 75252, Paris, France.
Anal Bioanal Chem. 2018 Jan;410(2):483-490. doi: 10.1007/s00216-017-0738-3. Epub 2017 Nov 22.
Due to the presence of pollutants in the environment and food, the assessment of human exposure is required. This necessitates high-throughput approaches enabling large-scale analysis and, as a consequence, the use of high-performance analytical instruments to obtain highly informative metabolomic profiles. In this study, direct introduction mass spectrometry (DIMS) was performed using a Fourier transform ion cyclotron resonance (FT-ICR) instrument equipped with a dynamically harmonized cell. Data quality was evaluated based on mass resolving power (RP), mass measurement accuracy, and ion intensity drifts from the repeated injections of quality control sample (QC) along the analytical process. The large DIMS data size entails the use of bioinformatic tools for the automatic selection of common ions found in all QC injections and for robustness assessment and correction of eventual technical drifts. RP values greater than 10 and mass measurement accuracy of lower than 1 ppm were obtained using broadband mode resulting in the detection of isotopic fine structure. Hence, a very accurate relative isotopic mass defect (RΔm) value was calculated. This reduces significantly the number of elemental composition (EC) candidates and greatly improves compound annotation. A very satisfactory estimate of repeatability of both peak intensity and mass measurement was demonstrated. Although, a non negligible ion intensity drift was observed for negative ion mode data, a normalization procedure was easily applied to correct this phenomenon. This study illustrates the performance and robustness of the dynamically harmonized FT-ICR cell to perform large-scale high-throughput metabolomic analyses in routine conditions. Graphical abstract Analytical performance of FT-ICR instrument equipped with a dynamically harmonized cell.
由于环境和食物中存在污染物,因此需要对人体暴露情况进行评估。这就需要采用高通量方法以实现大规模分析,进而使用高性能分析仪器来获取信息丰富的代谢组学图谱。在本研究中,使用配备动态谐调池的傅里叶变换离子回旋共振(FT-ICR)仪器进行直接进样质谱分析(DIMS)。基于质量分辨率(RP)、质量测量准确度以及在分析过程中对质量控制样品(QC)进行重复进样时的离子强度漂移来评估数据质量。大量的DIMS数据需要使用生物信息学工具来自动选择在所有QC进样中都能找到的常见离子,并用于稳健性评估以及对最终技术漂移的校正。使用宽带模式获得了大于10的RP值和低于1 ppm的质量测量准确度,从而实现了同位素精细结构的检测。因此,计算出了非常准确的相对同位素质量亏损(RΔm)值。这显著减少了元素组成(EC)候选物的数量,并大大提高了化合物注释的准确性。结果表明,峰强度和质量测量的重复性估计都非常令人满意。尽管在负离子模式数据中观察到了不可忽略的离子强度漂移,但可以轻松应用归一化程序来校正这一现象。本研究展示了动态谐调的FT-ICR池在常规条件下进行大规模高通量代谢组学分析的性能和稳健性。图形摘要:配备动态谐调池的FT-ICR仪器的分析性能。