Suppr超能文献

基于区域的并行层次卷积神经网络用于面神经麻痹评估。

Region Based Parallel Hierarchy Convolutional Neural Network for Automatic Facial Nerve Paralysis Evaluation.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Oct;28(10):2325-2332. doi: 10.1109/TNSRE.2020.3021410. Epub 2020 Sep 3.

Abstract

In this article, we propose a parallel hierarchy convolutional neural network (PHCNN) combining a Long Short-Term Memory (LSTM) network structure to quantitatively assess the grading of facial nerve paralysis (FNP) by considering the region-based asymmetric facial features and temporal variation of the image sequences. FNP, such as Bell's palsy, is the most common facial symptom of neuromotor dysfunctions. It causes the weakness of facial muscles for the normal emotional expression and movements. The subjective judgement by clinicians completely depends on individual experience, which may not lead to a uniform evaluation. Existing computer-aided methods mainly rely on some complicated imaging equipment, which is complicated and expensive for facial functional rehabilitation. Compared with the subjective judgment and complex imaging processing, the objective and intelligent measurement can potentially avoid this issue. Considering dynamic variation in both global and regional facial areas, the proposed hierarchical network with LSTM structure can effectively improve the diagnostic accuracy and extract paralysis detail from the low-level shape, contour to sematic level features. By segmenting the facial area into two palsy regions, the proposed method can discriminate FNP from normal face accurately and significantly reduce the effect caused by age wrinkles and unrepresentative organs with shape and position variations on feature learning. Experiment on the YouTube Facial Palsy Database and Extended CohnKanade Database shows that the proposed method is superior to the state of the art deep learning methods.

摘要

在本文中,我们提出了一种结合长短时记忆网络(LSTM)结构的并行层次卷积神经网络(PHCNN),用于通过考虑基于区域的不对称面部特征和图像序列的时间变化,定量评估面神经麻痹(FNP)的分级。FNP 如贝尔麻痹,是神经运动功能障碍最常见的面部症状。它会导致面部肌肉无力,无法进行正常的情感表达和运动。临床医生的主观判断完全取决于个人经验,可能无法进行统一评估。现有的计算机辅助方法主要依赖于一些复杂的成像设备,这对面部功能康复来说既复杂又昂贵。与主观判断和复杂的成像处理相比,客观和智能的测量方法可以潜在地避免这个问题。考虑到全局和局部面部区域的动态变化,具有 LSTM 结构的分层网络可以有效地提高诊断准确性,并从低级形状、轮廓到语义级特征中提取麻痹细节。通过将面部区域分割为两个麻痹区域,该方法可以准确地区分 FNP 和正常面部,并且显著减少了年龄皱纹和形状和位置变化的不具代表性的器官对面部特征学习的影响。在 YouTube 面神经麻痹数据库和扩展的 CohnKanade 数据库上的实验表明,所提出的方法优于最先进的深度学习方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验