文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于新冠疫情期间城市交通活力指数预测的深度时空元学习模型

A deep spatio-temporal meta-learning model for urban traffic revitalization index prediction in the COVID-19 pandemic.

作者信息

Wang Yue, Lv Zhiqiang, Sheng Zhaoyu, Sun Haokai, Zhao Aite

机构信息

College of Computer Science and Technology, Qingdao University, Qingdao, China.

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.

出版信息

Adv Eng Inform. 2022 Aug;53:101678. doi: 10.1016/j.aei.2022.101678. Epub 2022 Jun 20.


DOI:10.1016/j.aei.2022.101678
PMID:40478112
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9212927/
Abstract

The COVID-19 pandemic is a major global public health problem that has caused hardship to people's normal production and life. Predicting the traffic revitalization index can provide references for city managers to formulate policies related to traffic and epidemic prevention. Previous methods have struggled to capture the complex and diverse dynamic spatio-temporal correlations during the COVID-19 pandemic. Therefore, we propose a deep spatio-temporal meta-learning model for the prediction of traffic revitalization index (DeepMeta-TRI) using external auxiliary information such as COVID-19 data. We conduct extensive experiments on a real-world dataset, and the results validate the predictive performance of DeepMeta-TRI and its effectiveness in addressing underfitting.

摘要

新冠疫情是一个重大的全球公共卫生问题,给人们的正常生产生活带来了困难。预测交通复苏指数可为城市管理者制定交通和防疫相关政策提供参考。以往的方法难以捕捉新冠疫情期间复杂多样的动态时空相关性。因此,我们提出了一种利用新冠数据等外部辅助信息预测交通复苏指数的深度时空元学习模型(DeepMeta-TRI)。我们在一个真实世界数据集上进行了广泛实验,结果验证了DeepMeta-TRI的预测性能及其在解决欠拟合问题方面的有效性。

相似文献

[1]
A deep spatio-temporal meta-learning model for urban traffic revitalization index prediction in the COVID-19 pandemic.

Adv Eng Inform. 2022-8

[2]
A new approach to COVID-19 data mining: A deep spatial-temporal prediction model based on tree structure for traffic revitalization index.

Data Knowl Eng. 2023-7

[3]
Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalization index.

Data Knowl Eng. 2021-9

[4]
ST-D3DDARN: Urban traffic flow prediction based on spatio-temporal decoupled 3D DenseNet with attention ResNet.

PLoS One. 2024

[5]
Advancing urban traffic accident forecasting through sparse spatio-temporal dynamic learning.

Accid Anal Prev. 2024-6

[6]
AST3DRNet: Attention-Based Spatio-Temporal 3D Residual Neural Networks for Traffic Congestion Prediction.

Sensors (Basel). 2024-2-16

[7]
ST-GTrans: Spatio-temporal graph transformer with road network semantic awareness for traffic flow prediction.

Neural Netw. 2025-10

[8]
An Adaptive Spatio-Temporal Traffic Flow Prediction Using Self-Attention and Multi-Graph Networks.

Sensors (Basel). 2025-1-6

[9]
Parking Lot Traffic Prediction Based on Fusion of Multifaceted Spatio-Temporal Features.

Sensors (Basel). 2024-7-31

[10]
Covid-19 Dynamic Monitoring and Real-Time Spatio-Temporal Forecasting.

Front Public Health. 2021

本文引用的文献

[1]
Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalization index.

Data Knowl Eng. 2021-9

[2]
Multimodal Gait Recognition for Neurodegenerative Diseases.

IEEE Trans Cybern. 2022-9

[3]
Region Based Parallel Hierarchy Convolutional Neural Network for Automatic Facial Nerve Paralysis Evaluation.

IEEE Trans Neural Syst Rehabil Eng. 2020-10

[4]
Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model.

Diabetes Metab Syndr. 2020

[5]
Scaling in the recovery of urban transportation systems from massive events.

Sci Rep. 2020-2-17

[6]
Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

Sensors (Basel). 2017-4-10

[7]
Long short-term memory.

Neural Comput. 1997-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索