Liu Borui, Taheri Mahdiar, Torres Juan F, Fusco Zelio, Lu Teng, Liu Yun, Tsuzuki Takuya, Yu Guihua, Tricoli Antonio
Nanotechnology Research Laboratory, Research School of Electrical, Energy and Materials Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia.
Laboratory of Advanced Nanomaterials for Sustainability, Research School of Electrical, Energy and Materials Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia.
ACS Nano. 2020 Oct 27;14(10):13852-13864. doi: 10.1021/acsnano.0c06221. Epub 2020 Sep 9.
Lithium-sulfur batteries are one of the most promising next-generation high-density energy storage systems. Despite progress, the poor electrical conductivity and cycling stability of sulfur cathodes still hinder their practical implementation. Here, we developed a facile approach for the engineering of Janus double-sided conductive/insulating microporous ion-sieving membranes that significantly enhance recharge efficiency and long-term stability of Li-S batteries. Our membrane consists of an insulating Li-anode side and an electrically conductive S-cathode side. The insulating side consists of a standard polypropylene separator, while the conductive side is made of closely packed multilayers of high-aspect-ratio MOF/graphene nanosheets having a thickness of few nanometers and a specific surface area of 996 m g (MOF, metal-organic framework). Our models and experiments reveal that this electrically conductive microporous nanosheet architecture enables the reuse of polysulfide trapped in the membrane and decreases the polysulfide flux and concentration on the anode side by a factor of 250× over recent microporous membranes made of granular MOFs and standard battery separators. Notably, Li-S batteries using our Janus microporous membranes achieve an outstanding rate capability and long-term stability with 75.3% capacity retention over 1700 cycles. We demonstrate the broad applicability of our high-aspect-ratio MOF/graphene nanosheet preparation strategy by the synthesis of a diverse range of MOFs, including ZIF-67, ZIF-8, HKUST-1, NiFe-BTC, and Ni-NDC, providing a flexible approach for the design of Janus microporous membranes and electrically conductive microporous building blocks for energy storage and various other electrochemical applications.
锂硫电池是最具前景的下一代高密度储能系统之一。尽管取得了进展,但硫阴极较差的导电性和循环稳定性仍然阻碍了它们的实际应用。在此,我们开发了一种简便的方法来制备具有双面导电/绝缘微孔离子筛分功能的Janus膜,该膜能显著提高锂硫电池的充电效率和长期稳定性。我们的膜由绝缘的锂阳极侧和导电的硫阴极侧组成。绝缘侧由标准聚丙烯隔膜构成,而导电侧由紧密堆积的多层高纵横比金属有机框架/石墨烯纳米片制成,其厚度为几纳米,比表面积为996 m²/g(金属有机框架,MOF)。我们的模型和实验表明,这种导电微孔纳米片结构能够使捕获在膜中的多硫化物得以再利用,并使阳极侧的多硫化物通量和浓度比最近由颗粒状MOF制成的微孔膜和标准电池隔膜降低250倍。值得注意的是,使用我们的Janus微孔膜的锂硫电池具有出色的倍率性能和长期稳定性,在1700次循环后容量保持率为75.3%。我们通过合成多种MOF,包括ZIF-67、ZIF-8、HKUST-1、NiFe-BTC和Ni-NDC,证明了我们高纵横比MOF/石墨烯纳米片制备策略的广泛适用性,为设计用于储能和各种其他电化学应用的Janus微孔膜和导电微孔组件提供了一种灵活的方法。