Suppr超能文献

ARS:地下煤矿物联网的自适应鲁棒同步

ARS: Adaptive Robust Synchronization for Underground Coal Wireless Internet of Things.

作者信息

Zhang Kuiyuan, Pang Mingzhi, Yin Yuqing, Gao Shouwan, Chen Pengpeng

机构信息

School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China.

Mine Digitization Engineering Research Center, Ministry of Education, Xuzhou 221116, China.

出版信息

Sensors (Basel). 2020 Sep 2;20(17):4981. doi: 10.3390/s20174981.

Abstract

Clock synchronization is still a vital and challenging task for underground coal wireless internet of things (IoT) due to the uncertainty of underground environment and unreliability of communication links. Instead of considering on-demand driven clock synchronization, this paper proposes a novel Adaptive Robust Synchronization (ARS) scheme with packets loss for mine wireless environment. A clock synchronization framework that is based on Kalman filtering is first proposed, which can adaptively adjust the sampling period of each clock and reduce the communication overhead in single-hop networks. The proposed scheme also solves the problem of outliers in data packets with time-stamps. In addition, this paper extends the ARS algorithm to multi-hop networks. Additionally, the upper and lower bounds of error covariance expectation are analyzed in the case of incomplete measurement. Extensive simulations are conducted in order to evaluate the performance. In the simulation environment, the clock accuracy of ARS algorithm is improved by 7.85% when compared with previous studies for single-hop networks. For multi-hop networks, the proposed scheme improves the accuracy by 12.56%. The results show that the proposed algorithm has high scalability, robustness, and accuracy, and can quickly adapt to different clock accuracy requirements.

摘要

由于地下环境的不确定性和通信链路的不可靠性,时钟同步对于煤矿井下无线物联网(IoT)来说仍然是一项至关重要且具有挑战性的任务。本文提出了一种适用于矿井无线环境的、针对丢包情况的新型自适应鲁棒同步(ARS)方案,而不是考虑按需驱动的时钟同步。首先提出了一种基于卡尔曼滤波的时钟同步框架,该框架可以自适应地调整每个时钟的采样周期,并减少单跳网络中的通信开销。所提出的方案还解决了带时间戳数据包中的异常值问题。此外,本文将ARS算法扩展到了多跳网络。另外,分析了在测量不完整情况下误差协方差期望的上下界。为了评估性能进行了大量仿真。在仿真环境中,与之前单跳网络的研究相比,ARS算法的时钟精度提高了7.85%。对于多跳网络,所提出的方案将精度提高了12.56%。结果表明,所提出的算法具有高可扩展性、鲁棒性和准确性,并且能够快速适应不同的时钟精度要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc5/7506929/0df0ac21dddb/sensors-20-04981-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验