Joint Center for Artificial Photosynthesis and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
Nat Commun. 2020 Sep 4;11(1):4412. doi: 10.1038/s41467-020-18232-y.
Capture and conversion of CO from oceanwater can lead to net-negative emissions and can provide carbon source for synthetic fuels and chemical feedstocks at the gigaton per year scale. Here, we report a direct coupled, proof-of-concept electrochemical system that uses a bipolar membrane electrodialysis (BPMED) cell and a vapor-fed CO reduction (COR) cell to capture and convert CO from oceanwater. The BPMED cell replaces the commonly used water-splitting reaction with one-electron, reversible redox couples at the electrodes and demonstrates the ability to capture CO at an electrochemical energy consumption of 155.4 kJ mol or 0.98 kWh kg of CO and a CO capture efficiency of 71%. The direct coupled, vapor-fed COR cell yields a total Faradaic efficiency of up to 95% for electrochemical CO reduction to CO. The proof-of-concept system provides a unique technological pathway for CO capture and conversion from oceanwater with only electrochemical processes.
从海水中捕获和转化 CO 可以实现净负排放,并可为每年百万吨级的合成燃料和化工原料提供碳源。在此,我们报告了一种直接耦合的、概念验证的电化学系统,该系统使用双极膜电渗析(BPMED)电池和汽相 CO 还原(COR)电池从海水中捕获和转化 CO。BPMED 电池用在电极上的一电子可逆氧化还原对代替了常用的水分解反应,证明了在电化学能耗为 155.4 kJ/mol 或 0.98 kWh/kg CO 和 CO 捕获效率为 71%的情况下可以捕获 CO。直接耦合的汽相 COR 电池为电化学 CO 还原生成 CO 提供了高达 95%的总法拉第效率。该概念验证系统为仅用电化学过程从海水中捕获和转化 CO 提供了一条独特的技术途径。