Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich &JARA, D-52425 Jülich, Germany.
Nat Commun. 2016 Dec 20;7:13613. doi: 10.1038/ncomms13613.
When electrons are driven through unconventional magnetic structures, such as skyrmions, they experience emergent electromagnetic fields that originate several Hall effects. Independently, ground-state emergent magnetic fields can also lead to orbital magnetism, even without the spin-orbit interaction. The close parallel between the geometric theories of the Hall effects and of the orbital magnetization raises the question: does a skyrmion display topological orbital magnetism? Here we first address the smallest systems with nonvanishing emergent magnetic field, trimers, characterizing the orbital magnetic properties from first-principles. Armed with this understanding, we study the orbital magnetism of skyrmions and demonstrate that the contribution driven by the emergent magnetic field is topological. This means that the topological contribution to the orbital moment does not change under continuous deformations of the magnetic structure. Furthermore, we use it to propose a new experimental protocol for the identification of topological magnetic structures, by soft X-ray spectroscopy.
当电子通过非常规的磁性结构(如 skyrmions)时,它们会经历源自几个霍尔效应的新兴电磁场。独立地,基态新兴电磁场也可以导致轨道磁矩,即使没有自旋轨道相互作用。霍尔效应和轨道磁化强度的几何理论之间的紧密平行提出了一个问题:skyrmion 是否显示拓扑轨道磁矩?在这里,我们首先研究具有非零新兴磁场的最小系统——三聚体,从第一性原理上描述轨道磁性质。有了这个理解,我们研究了 skyrmion 的轨道磁矩,并证明了由新兴磁场驱动的贡献是拓扑的。这意味着拓扑对轨道矩的贡献在磁结构的连续变形下不会改变。此外,我们利用它通过软 X 射线光谱提出了一种新的实验方案来识别拓扑磁性结构。