James Cook University, Townsville, Australia.
University of British Columbia, Vancouver, Canada.
Sci Rep. 2020 Sep 4;10(1):14671. doi: 10.1038/s41598-020-71639-x.
Visual analysis of complex fish habitats is an important step towards sustainable fisheries for human consumption and environmental protection. Deep Learning methods have shown great promise for scene analysis when trained on large-scale datasets. However, current datasets for fish analysis tend to focus on the classification task within constrained, plain environments which do not capture the complexity of underwater fish habitats. To address this limitation, we present DeepFish as a benchmark suite with a large-scale dataset to train and test methods for several computer vision tasks. The dataset consists of approximately 40 thousand images collected underwater from 20 habitats in the marine-environments of tropical Australia. The dataset originally contained only classification labels. Thus, we collected point-level and segmentation labels to have a more comprehensive fish analysis benchmark. These labels enable models to learn to automatically monitor fish count, identify their locations, and estimate their sizes. Our experiments provide an in-depth analysis of the dataset characteristics, and the performance evaluation of several state-of-the-art approaches based on our benchmark. Although models pre-trained on ImageNet have successfully performed on this benchmark, there is still room for improvement. Therefore, this benchmark serves as a testbed to motivate further development in this challenging domain of underwater computer vision.
对复杂鱼类栖息地进行视觉分析是实现人类消费和环境保护可持续渔业的重要步骤。在大规模数据集上进行训练的深度学习方法在场景分析方面显示出了巨大的潜力。然而,目前用于鱼类分析的数据集往往侧重于在受限的、简单的环境中进行分类任务,无法捕捉水下鱼类栖息地的复杂性。为了解决这个局限性,我们提出了 DeepFish,这是一个基准套件,带有一个大规模数据集,可以训练和测试几种计算机视觉任务的方法。该数据集由大约 4 万张从澳大利亚热带海洋环境的 20 个栖息地水下采集的图像组成。该数据集最初只包含分类标签。因此,我们收集了点级和分割标签,以提供更全面的鱼类分析基准。这些标签使模型能够学习自动监测鱼类数量、识别它们的位置和估计它们的大小。我们的实验对数据集的特征进行了深入分析,并基于我们的基准对几种最先进方法的性能进行了评估。尽管在这个基准上,基于 ImageNet 预训练的模型已经取得了成功,但仍有改进的空间。因此,这个基准为水下计算机视觉这一具有挑战性的领域提供了一个测试平台,以推动进一步的发展。