Suppr超能文献

用于池塘环境中实时鱼类检测的综合注释图像数据集。

A comprehensive annotated image dataset for real-time fish detection in pond settings.

作者信息

M Vijayalakshmi, A Sasithradevi

机构信息

School of Electronics Engineering, Vellore Institute of Technology, Kelambakkam-vandalur road, Chennai 600127, India.

Centre for Advanced Data Science, Vellore Institute of Technology, Kelambakkam-vandalur road, Chennai 600127, India.

出版信息

Data Brief. 2024 Oct 9;57:111007. doi: 10.1016/j.dib.2024.111007. eCollection 2024 Dec.

Abstract

Fish is a vital food source, providing essential nutrients and playing a crucial role in global food security. In Tamil Nadu, fish is particularly important, contributing significantly to the local diet, economy, and livelihoods of numerous fishing communities along its extensive coastline. Our objective is to develop an efficient fish detection system in pond environments to contribute to small-scale industries by facilitating fish classification, growth monitoring, and other essential aquaculture practices through a non-invasive approach. This dataset comprises of Orange Chromide fish species (Etroplus maculatus) captured under several computer vision challenges, including occlusion, turbid water conditions, high fish density per frame, and varying lighting conditions. We present annotated images derived from underwater video recordings in Retteri Pond, Kolathur, Chennai, Tamil Nadu (GPS coordinates: Lat 13.132725, Long 80.212555). The footage was captured using an underwater camera without artificial lighting, at depths less than 4 m to maintain naturalness in underwater images. The recorded videos were converted to 2D images, which were manually annotated using the Roboflow tool. This carefully annotated dataset, offers a valuable resource for aquaculture engineers, marine biologists, and experts in computer vision, and deep learning, aiding in the creation of automated detection tools for underwater imagery.

摘要

鱼类是重要的食物来源,提供必需的营养物质,在全球粮食安全中发挥着关键作用。在泰米尔纳德邦,鱼类尤为重要,对当地饮食、经济以及其漫长海岸线上众多渔业社区的生计做出了重大贡献。我们的目标是开发一种在池塘环境中高效的鱼类检测系统,通过非侵入性方法促进鱼类分类、生长监测和其他重要的水产养殖实践,从而为小规模产业做出贡献。该数据集包含在多种计算机视觉挑战下捕获的橙色铬鱼(Etroplus maculatus),这些挑战包括遮挡、浑浊的水质条件、每帧高鱼密度以及变化的光照条件。我们展示了来自泰米尔纳德邦金奈科拉瑟尔雷特里池塘水下视频记录的带注释图像(GPS坐标:北纬13.132725,东经80.212555)。这些 footage 是使用水下相机在无人工照明的情况下,在深度小于4米处拍摄的,以保持水下图像的自然度。录制的视频被转换为2D图像,并使用Roboflow工具进行手动注释。这个经过精心注释的数据集为水产养殖工程师、海洋生物学家以及计算机视觉和深度学习专家提供了宝贵资源,有助于创建用于水下图像的自动检测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d7/11528554/73a1cbfaed71/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验