Multimedia Information Processing Group, Kiel University, 24118 Kiel, Germany.
Laboratoire d'Océanographie de Villefranche, Sorbonne Université, 06230 Villefranche-sur-Mer, France.
Sensors (Basel). 2021 Oct 7;21(19):6661. doi: 10.3390/s21196661.
Deep learning has been successfully applied to many classification problems including underwater challenges. However, a long-standing issue with deep learning is the need for large and consistently labeled datasets. Although current approaches in semi-supervised learning can decrease the required amount of annotated data by a factor of 10 or even more, this line of research still uses distinct classes. For underwater classification, and uncurated real-world datasets in general, clean class boundaries can often not be given due to a limited information content in the images and transitional stages of the depicted objects. This leads to different experts having different opinions and thus producing fuzzy labels which could also be considered ambiguous or divergent. We propose a novel framework for handling semi-supervised classifications of such fuzzy labels. It is based on the idea of overclustering to detect substructures in these fuzzy labels. We propose a novel loss to improve the overclustering capability of our framework and show the benefit of overclustering for fuzzy labels. We show that our framework is superior to previous state-of-the-art semi-supervised methods when applied to real-world plankton data with fuzzy labels. Moreover, we acquire 5 to 10% more consistent predictions of substructures.
深度学习已成功应用于许多分类问题,包括水下挑战。然而,深度学习的一个长期问题是需要大量且始终一致的标记数据集。尽管半监督学习中的当前方法可以将所需的注释数据量减少 10 倍甚至更多,但该研究方向仍使用不同的类别。对于水下分类和一般未经整理的真实世界数据集,由于图像中的信息量有限以及所描绘物体的过渡阶段,通常无法给出清晰的类别边界。这导致不同的专家有不同的意见,从而产生模糊标签,这些标签也可能被认为是模糊或分歧的。我们提出了一种处理此类模糊标签的半监督分类的新框架。它基于过度聚类的思想,以检测这些模糊标签中的子结构。我们提出了一种新的损失函数来提高我们框架的过度聚类能力,并展示了过度聚类对模糊标签的好处。当我们将其应用于具有模糊标签的真实浮游生物数据时,我们的框架优于之前的最先进的半监督方法。此外,我们还可以获得 5%到 10%更多的子结构一致预测。