Suppr超能文献

无监督光谱映射和特征选择在高光谱异常检测中的应用。

Unsupervised spectral mapping and feature selection for hyperspectral anomaly detection.

机构信息

State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China.

State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China.

出版信息

Neural Netw. 2020 Dec;132:144-154. doi: 10.1016/j.neunet.2020.08.010. Epub 2020 Aug 28.

Abstract

Exploring techniques that breakthrough the unknown space or material species is of considerable significance to military and civilian fields, and it is a challenging task without any prior information. Nowadays, the use of material-specific spectral information to detect unknowns has received increasing interest. However, affected by noise and interference, high-dimensional hyperspectral anomaly detection is difficult to meet the requirements of high detection accuracy and low false alarm rate. Besides, there is a problem of insufficient and unbalanced samples. To address these problems, we propose a novel hyperspectral anomaly detection framework based on spectral mapping and feature selection (SMFS) in an unsupervised manner. The SMFS introduces the essential properties of hyperspectral data into an unsupervised neural network to construct the nonlinear mapping relationship from high-dimensional spectral space to low-dimensional deep feature space. And it searches the optimal feature subset from the candidate feature space for standing out anomalies. Because of the compelling characterization of the encoder, we develop it specifically for spectral signatures to reveal the hidden data. Quantitative and qualitative experiments on real hyperspectral datasets indicate that the proposed method can provide the compact features overcoming the problems of noise, interference, redundancy and time-consuming caused by high-dimensionality and limited samples. And it has advantages over some state-of-the-art competitors concerning detecting anomalies of different scales.

摘要

探索突破未知空间或物质种类的技术,对军事和民用领域都具有重要意义,这是一项具有挑战性的任务,因为没有任何先验信息。如今,利用物质特定的光谱信息来探测未知物已经引起了越来越多的关注。然而,受噪声和干扰的影响,高维高光谱异常检测很难满足高精度和低误报率的要求。此外,还存在样本不足和不平衡的问题。为了解决这些问题,我们提出了一种基于无监督光谱映射和特征选择(SMFS)的新的高光谱异常检测框架。SMFS 将高光谱数据的本质属性引入到无监督神经网络中,构建了从高维光谱空间到低维深度特征空间的非线性映射关系。并从候选特征空间中搜索最佳特征子集来突出异常。由于编码器具有很强的特征表示能力,我们专门针对光谱特征对其进行了开发,以揭示隐藏的数据。在真实高光谱数据集上的定量和定性实验表明,所提出的方法可以提供紧凑的特征,克服了高维性和有限样本所带来的噪声、干扰、冗余和耗时的问题。并且在检测不同尺度的异常方面,它比一些最先进的竞争对手具有优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验