Suppr超能文献

基于谱约束对抗自动编码器的高光谱异常检测特征表示方法。

Spectral constraint adversarial autoencoders approach to feature representation in hyperspectral anomaly detection.

机构信息

State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China.

State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China.

出版信息

Neural Netw. 2019 Nov;119:222-234. doi: 10.1016/j.neunet.2019.08.012. Epub 2019 Aug 22.

Abstract

Anomaly detection in hyperspectral images (HSIs) faces various levels of difficulty due to the high dimensionality, redundant information and deteriorated bands. To address these problems, we propose a novel unsupervised feature representation approach by incorporating a spectral constraint strategy into adversarial autoencoders (AAE) without any prior knowledge in this paper. Our approach, called SC_AAE (spectral constraint AAE), is based on the characteristics of HSIs to obtain better discrimination represented by hidden nodes. To be specific, we adopt a spectral angle distance into the loss function of AAE to enforce spectral consistency. Considering the different contribution rates of each hidden node to anomaly detection, we individually fuse the hidden nodes by an adaptive weighting method. A bi-layer architecture is then designed to suppress the variational background (BKG) while preserving features of anomalies. The experimental results demonstrate that our proposed method outperforms the state-of-the-art methods.

摘要

高光谱图像 (HSI) 中的异常检测面临各种困难,包括高维性、冗余信息和恶化的波段。为了解决这些问题,我们提出了一种新的无监督特征表示方法,即将谱约束策略纳入对抗自动编码器 (AAE) 中,而无需任何先验知识。我们的方法称为 SC_AAE(谱约束 AAE),它基于 HSIs 的特征,通过隐藏节点获得更好的判别表示。具体来说,我们采用谱角距离作为 AAE 的损失函数,以强制谱一致性。考虑到每个隐藏节点对异常检测的不同贡献率,我们采用自适应加权方法分别融合隐藏节点。然后设计了一个双层架构来抑制变异性背景 (BKG),同时保留异常特征。实验结果表明,我们提出的方法优于最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验