Suppr超能文献

基于智能手机的分光光度计测量误差结构的系统研究。

Systematic investigation of the measurement error structure in a smartphone-based spectrophotometer.

机构信息

Chemistry Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.

Chemistry Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Trace Analysis Research Centre, Department of Chemistry, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2, Canada.

出版信息

Anal Chim Acta. 2020 Sep 8;1129:98-107. doi: 10.1016/j.aca.2020.06.066. Epub 2020 Jul 14.

Abstract

Smartphones are state-of-the-art devices with several interesting features which make them promising for analytical purposes. After modification to a spectrophotometer (smart spectrophotometer), they can be utilized for the quantitative or qualitative applications. Although smartphones have widely been applied for sensing∖biosensing purposes, the error structure/type of their outputs remained unexplored. Error structure information values the objects/channels in a given data set and variables have the same importance when the noise has identical independent distribution (i.i.d). Otherwise, error structure weights them for further data analysis. In this contribution, a smartphone-based spectrophotometer was constructed integrating simple optical elements-a tungsten lamp as source and a piece of digital versatile disc (DVD) as a reflecting diffraction grating to investigate the error sources of the smartphone-spectrophotometer. For this purpose, error covariance matrices (ECMs) were calculated using a series of replication capturing error information. Afterwards, PCA and MCR-ALS were employed for the decomposition of the ECMs and resolved profiles were translated to the error types. Finally, proportional error as a heteroscedastic noise was highlighted as the most important source of variation in the error structure of the smartphone-based spectrophotometer.

摘要

智能手机是具有多种有趣功能的最先进设备,这使得它们在分析目的方面具有很大的潜力。经过对分光光度计(智能分光光度计)的改装,它们可用于定量或定性应用。尽管智能手机已广泛应用于传感∖生物传感目的,但它们输出的误差结构/类型仍未得到探索。当噪声具有相同的独立分布(i.i.d)时,误差结构信息值会为给定数据集的对象/通道赋值,并且变量具有相同的重要性。否则,误差结构会对其进行加权,以便进一步进行数据分析。在本研究中,构建了一种基于智能手机的分光光度计,该分光光度计集成了简单的光学元件-钨灯作为光源和一张数字通用光盘(DVD)作为反射衍射光栅,以研究智能手机分光光度计的误差源。为此,使用一系列重复捕获误差信息来计算误差协方差矩阵(ECM)。然后,采用 PCA 和 MCR-ALS 对 ECM 进行分解,并将解析谱转换为误差类型。最后,突出显示比例误差作为智能手机分光光度计误差结构中的异方差噪声是变化的最重要来源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验