Suppr超能文献

DNSS2:使用先进深度学习架构改进从头算蛋白质二级结构预测

DNSS2: Improved ab initio protein secondary structure prediction using advanced deep learning architectures.

作者信息

Guo Zhiye, Hou Jie, Cheng Jianlin

机构信息

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA.

Department of Computer Science, Saint Louis University, St. Louis, Missouri, USA.

出版信息

Proteins. 2021 Feb;89(2):207-217. doi: 10.1002/prot.26007. Epub 2020 Sep 16.

Abstract

Accurate prediction of protein secondary structure (alpha-helix, beta-strand and coil) is a crucial step for protein inter-residue contact prediction and ab initio tertiary structure prediction. In a previous study, we developed a deep belief network-based protein secondary structure method (DNSS1) and successfully advanced the prediction accuracy beyond 80%. In this work, we developed multiple advanced deep learning architectures (DNSS2) to further improve secondary structure prediction. The major improvements over the DNSS1 method include (a) designing and integrating six advanced one-dimensional deep convolutional/recurrent/residual/memory/fractal/inception networks to predict 3-state and 8-state secondary structure, and (b) using more sensitive profile features inferred from Hidden Markov model (HMM) and multiple sequence alignment (MSA). Most of the deep learning architectures are novel for protein secondary structure prediction. DNSS2 was systematically benchmarked on independent test data sets with eight state-of-art tools and consistently ranked as one of the best methods. Particularly, DNSS2 was tested on the protein targets of 2018 CASP13 experiment and achieved the Q3 score of 81.62%, SOV score of 72.19%, and Q8 score of 73.28%. DNSS2 is freely available at: https://github.com/multicom-toolbox/DNSS2.

摘要

准确预测蛋白质二级结构(α-螺旋、β-链和卷曲)是蛋白质残基间接触预测和从头三级结构预测的关键步骤。在之前的一项研究中,我们开发了一种基于深度信念网络的蛋白质二级结构预测方法(DNSS1),并成功将预测准确率提高到了80%以上。在这项工作中,我们开发了多种先进的深度学习架构(DNSS2)以进一步提高二级结构预测能力。相对于DNSS1方法的主要改进包括:(a)设计并整合六种先进的一维深度卷积/循环/残差/记忆/分形/初始网络,以预测三状态和八状态二级结构;(b)使用从隐马尔可夫模型(HMM)和多序列比对(MSA)推断出的更敏感的轮廓特征。大多数深度学习架构在蛋白质二级结构预测方面都是新颖的。DNSS2在独立测试数据集上与八种最先进的工具进行了系统的基准测试,并一直被列为最佳方法之一。特别是,DNSS2在2018年蛋白质结构预测技术关键评估(CASP13)实验的蛋白质靶点上进行了测试,获得了81.62%的Q3分数、72.19%的SOV分数和73.28%的Q8分数。DNSS2可在以下网址免费获取:https://github.com/multicom-toolbox/DNSS2

相似文献

9
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.基于超深度学习模型的蛋白质接触图从头精确预测
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.

引用本文的文献

本文引用的文献

2
PconsC4: fast, accurate and hassle-free contact predictions.PconsC4:快速、准确、无麻烦的接触预测。
Bioinformatics. 2019 Aug 1;35(15):2677-2679. doi: 10.1093/bioinformatics/bty1036.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验